Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 36(29): e2401007, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695220

RESUMEN

Self-healing microelectronics are needed for costly applications with limited or without access. They are needed in fields such as space exploration to increase lifetime and decrease both costs and the environmental impact. While advanced self-healing mechanisms for polymers are numerous, practical ways for self-healing in metal films have yet to be found. A concept for an autonomous intrinsic self-healing metallic film system is developed, allowing the healing of cracks in metallic films on flexible substrates. The concept relies on stabilizing metastable thin films with high mixing enthalpy via segregation barriers. This allows the films to possess autonomous intrinsic self-healing capabilities triggered by cracking at temperatures not detrimental to flexible microelectronics. The effect will be shown on metastable Mo1-xAgx thin films, stabilized via a Mo segregation barrier. Without a segregation barrier, the system is known to exhibit spontaneous Ag particle formation on the surface. This property is controlled and directed to heal cracks and partially restore the electro-mechanical properties of the multilayer system. This mechanism opens up the field of self-healing thin metallic films that could profoundly impact the design of future microelectronics.

2.
ACS Appl Nano Mater ; 4(1): 61-70, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33521588

RESUMEN

Improving the interface stability for nanosized thin films on brittle substrates is crucial for technological applications such as microelectronics because the so-called brittle-ductile interfaces limit their overall reliability. By tuning the thin film properties, interface adhesion can be improved because of extrinsic toughening mechanisms during delamination. In this work, the influence of the film microstructure on interface adhesion was studied on a model brittle-ductile interface consisting of nanosized Cu films on brittle glass substrates. Therefore, 110 nm thin Cu films were deposited on glass substrates using magnetron sputtering. While film thickness, residual stresses, and texture of the Cu films were maintained comparable in the sputtering processes, the film microstructure was varied during deposition and via isothermal annealing, resulting in four different Cu films with bimodal grain size distributions. The interface adhesion of each Cu film was then determined using stressed Mo overlayers, which triggered Cu film delaminations in the shape of straight, spontaneous buckles. The mixed-mode adhesion energy for each film ranged from 2.35 J/m2 for the films with larger grains to 4.90 J/m2 for the films with the highest amount of nanosized grains. This surprising result could be clarified using an additional study of the buckles using focused ion beam cutting and quantification via confocal laser scanning microscopy to decouple and quantify the amount of elastic and plastic deformation stored in the buckled thin film. It could be shown that the films with smaller grains exhibit the possibility of absorbing a higher amount of energy during delamination, which explains their higher adhesion energy.

3.
Sci Rep ; 7(1): 7374, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28785003

RESUMEN

A major obstacle in the utilization of Mo thin films in flexible electronics is their brittle fracture behavior. Within this study, alloying with Re is explored as a potential strategy to improve the resistance to fracture. The sputter-deposited Mo1-xRex films (with 0 ≤ x ≤ 0.31) were characterized in terms of structural and mechanical properties, residual stresses as well as electrical resistivity. Their deformation behavior was assessed by straining 50 nm thin films on polyimide substrates in uniaxial tension, while monitoring crack initiation and propagation in situ by optical microscopy and electrical resistance measurements. A significant toughness enhancement occurs with increasing Re content for all body-centered cubic solid solution films (x ≤ 0.23). However, at higher Re concentrations (x > 0.23) the positive effect of Re is inhibited due to the formation of dual-phase films with the additional close packed A15 Mo3Re phase. The mechanisms responsible for the observed toughness behavior are discussed based on experimental observations and electronic structure calculations. Re gives rise to both increased plasticity and bond strengthening in these Mo-Re solid solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA