Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 382(2): 135-148, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35609923

RESUMEN

8-Aminoguanine and 8-aminoguanosine (via metabolism to 8-aminoguanine) are endogenous 8-aminopurines that induce diuresis, natriuresis, and glucosuria by inhibiting purine nucleoside phosphorylase (PNPase); moreover, both 8-aminopurines cause antikaliuresis by other mechanisms. Because 8-aminoinosine and 8-aminohypoxanthine are structurally similar to 8-aminoguanosine and 8-aminoguanine, respectively, we sought to define their renal excretory effects. First, we compared the ability of 8-aminoguanine, 8-aminohypoxanthine, and 8-aminoinosine to inhibit recombinant PNPase. These compounds inhibited PNPase with a potency order of 8-aminoguanine > 8-aminohypoxanthine = 8-aminoinosine. Additional studies showed that 8-aminoinosine is a competitive substrate that is metabolized to a competitive PNPase inhibitor, namely 8-aminohypoxanthine. Administration of each 8-aminopurine (33.5 µmol/kg) reduced the guanine-to-guanosine and hypoxanthine-to-inosine ratios in urine, a finding confirming their ability to inhibit PNPase in vivo. All three 8-aminopurines induced diuresis, natriuresis, and glucosuria; however, the glucosuric effects of 8-aminohypoxanthine and 8-aminoinosine were less pronounced than those of 8-aminoguanine. Neither 8-aminohypoxanthine nor 8-aminoinosine altered potassium excretion, whereas 8-aminoguanine caused antikaliuresis. In vivo administration of 8-aminoinosine increased 8-aminohypoxanthine excretion, indicating that 8-aminohypoxanthine mediates, in part, the effects of 8-aminoinosine. Finally, 8-aminohypoxanthine was metabolized to 8-aminoxanthine by xanthine oxidase. Using ultraperformance liquid chromatography-tandem mass spectrometry, we identified 8-aminoinosine as an endogenous 8-aminopurine. In conclusion, 8-aminopurines have useful pharmacological profiles. To induce diuresis, natriuresis, glucosuria, and antikaliuresis, 8-aminoguanine (or its prodrug 8-aminoguanosine) would be preferred. If only diuresis and natriuresis, without marked glucosuria or antikaliuresis, is desired, 8-aminohypoxanthine or 8-aminoinosine might be useful. Finally, here we report the in vivo existence of another pharmacologically active 8-aminopurine, namely 8-aminoinosine. SIGNIFICANCE STATEMENT: Here, we report that a family of 8-aminopurines affects renal excretory function: effects that may be useful for treating multiple diseases including hypertension, heart failure, and chronic kidney disease. For diuresis and natriuresis accompanied by glucosuria and antikaliuresis, 8-aminoguanine (or its prodrug 8-aminoguanosine) would be useful; if only diuresis and natriuresis is called for, 8-aminohypoxanthine or 8-aminoinosine would be useful. Previously, we identified 8-aminoguanine and 8-aminoguanosine as endogenous 8-aminopurines; here, we extend the family of endogenous 8-aminopurines to include 8-aminoinosine.


Asunto(s)
Glucosuria , Profármacos , Humanos , Diuresis , Diuréticos/farmacología , Natriuresis , Profármacos/farmacología , Purina-Nucleósido Fosforilasa/farmacología
2.
Am J Physiol Renal Physiol ; 321(2): F135-F148, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34151589

RESUMEN

Cell-associated kidney injury molecule-1 (KIM-1) exerts an anti-inflammatory role following kidney injury by mediating efferocytosis and downregulating the NF-κB pathway. KIM-1 cleavage blunts its anti-inflammatory activities. We reported that mucin 1 (MUC1) is protective in a mouse model of ischemia-reperfusion injury (IRI). As both KIM-1 and MUC1 are induced in the proximal tubule (PT) during IRI and are a disintegrin and metalloprotease 17 (ADAM17) substrates, we tested the hypothesis that MUC1 protects KIM-1 activity. Muc1 knockout (KO) mice and wild-type (WT) littermates were subjected to IRI. KIM-1, MUC1, and ADAM17 levels (and signaling pathways) were assessed by immunoblot analysis. PT localization was assessed by confocal microscopy and an in situ proximity ligation assay. Findings were extended using human kidneys and urine as well as KIM-1-mediated efferocytosis assays in mouse PT cultures. In response to tubular injury in mouse and human kidneys, we observed induction and coexpression of KIM-1 and MUC1 in the PT. Compared with WT mice, Muc1 KO mice had higher urinary KIM-1 and lower kidney KIM-1. KIM-1 was apical in the PT of WT kidneys but predominately with luminal debris in Muc1 KO mice. Efferocytosis was reduced in Muc1 KO PT cultures compared with WT cultures, whereas inflammation was increased in Muc1 KO kidneys compared with WT kidneys. MUC1 was cleaved by ADAM17 in PT cultures and blocked KIM-1 shedding in Madin-Darby canine kidney cells. We conclude that KIM-1-mediated efferocytosis and thus anti-inflammatory activity during IRI is preserved in the injured kidney by MUC1 inhibition of KIM-1 shedding.NEW & NOTEWORTHY KIM-1 plays a key role in the recovery of the tubule epithelium during renal IRI by mediating efferocytosis and associated signaling that suppresses inflammation. Excessive cleavage of KIM-1 by ADAM17 provides a decoy receptor that aggravates efferocytosis and subsequent signaling. Our data from experiments in mice, patients, and cultured cells show that MUC1 is also induced during IRI and competes with KIM-1 for cleavage by ADAM17. Consequently, MUC1 protects KIM-1 anti-inflammatory activity in the damaged kidney.


Asunto(s)
Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Inflamación/metabolismo , Túbulos Renales Proximales/metabolismo , Riñón/irrigación sanguínea , Mucina-1/metabolismo , Daño por Reperfusión/metabolismo , Proteína ADAM17/metabolismo , Animales , Línea Celular , Perros , Humanos , Riñón/metabolismo , Ratones Noqueados , Ratones Transgénicos , Mucina-1/genética , Fagocitosis/fisiología
3.
FASEB J ; 34(5): 7036-7057, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32246808

RESUMEN

The purpose was to determine the role of AMPK activation in the renal metabolic response to sepsis, the development of sepsis-induced acute kidney injury (AKI) and on survival. In a prospective experimental study, 167 10- to 12-week-old C57BL/6 mice underwent cecal ligation and puncture (CLP) and human proximal tubule epithelial cells (TEC; HK2) were exposed to inflammatory mix (IM), a combination of lipopolysaccharide (LPS) and high mobility group box 1 (HMGB1). Renal/TEC metabolic fitness was assessed by monitoring the expression of drivers of oxidative phosphorylation (OXPHOS), the rates of utilization of OXPHOS/glycolysis in response to metabolic stress, and mitochondrial function by measuring O2 consumption rates (OCR) and the membrane potential (Δψm ). Sepsis/IM resulted in AKI, increased mortality, and in renal AMPK activation 6-24 hours after CLP/IM. Pharmacologic activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or metformin during sepsis improved the survival, while AMPK inhibition with Compound C increased mortality, impaired mitochondrial respiration, decreased OCR, and disrupted TEC metabolic fitness. AMPK-driven protection was associated with increased Sirt 3 expression and restoration of metabolic fitness. Renal AMPK activation in response to sepsis/IM is an adaptive mechanism that protects TEC, organs, and the host by preserving mitochondrial function and metabolic fitness likely through Sirt3 signaling.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Inflamación/metabolismo , Riñón/metabolismo , Sepsis/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Lesión Renal Aguda/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Activación Enzimática , Células Epiteliales/metabolismo , Humanos , Túbulos Renales Proximales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Consumo de Oxígeno
4.
World J Urol ; 39(7): 2685-2690, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33078215

RESUMEN

PURPOSE: Aging increases oxidative stress, which can have delirious effects on smooth and striated muscle resulting in bladder dysfunction. Consequently, in women aged over 60 years, urinary incontinence (UI) is a prevalent health problem. Despite the prevalence and consequences, UI continues to be undertreated simply because there are few therapeutic options. METHODS: Here we investigated whether 8-aminoguanine (8-AG), a purine nucleoside phosphorylase (PNPase inhibitor), would restore urethra and external sphincter (EUS) muscle morphology in the aged rat. Aged (> 25 months) female Fischer 344 rats were randomized to oral treatment with 8-AG (6 weeks) or placebo, and the urethra and EUS were evaluated by electron microscopy and protein expression (western immunoblotting). RESULTS: Aging was associated with mitochondrial degeneration in smooth and striated muscle cells as compared to young rats. We also observed a significant increase in biomarkers such as PARP, a downstream activator of oxidative/nitrosative stress. Treatment of aged rats with 8-AG normalized all abnormalities to that of a younger state. CONCLUSIONS: 8-AG, a potent inhibitor of PNPase, reverses age-related lower urinary tract morphological and biochemical changes. Our observations support the concept that 8-AG will reverse age-induced lower urinary tract disorders such as UI. These initial findings could have therapeutic implications for the prevention and treatment of age-related UI.


Asunto(s)
Guanina/análogos & derivados , Músculo Estriado/efectos de los fármacos , Músculo Estriado/patología , Uretra/efectos de los fármacos , Uretra/patología , Animales , Femenino , Guanina/farmacología , Guanina/uso terapéutico , Distribución Aleatoria , Ratas , Ratas Endogámicas F344
5.
J Infect Dis ; 221(10): 1598-1606, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-31282542

RESUMEN

BACKGROUND: Adenosine is a potent immunoregulatory nucleoside produced during inflammatory states to limit tissue damage. We hypothesized that dipyridamole, which inhibits cellular adenosine uptake, could raise the extracellular adenosine concentration and dampen chronic inflammation associated with human immunodeficiency virus (HIV) type 1. METHODS: Virally suppressed participants receiving antiretroviral therapy were randomized 1:1 for 12 weeks of dipyridamole (100 mg 4 times a day) versus placebo capsules. All participants took open-label dipyridamole during weeks 12-24. Study end points included changes in markers of systemic inflammation (soluble CD163 and CD14, and interleukin 6) and levels of T-cell immune activation (HLA-DR+CD38+). RESULTS: Of 40 participants who were randomized, 17 dipyridamole and 18 placebo recipients had baseline and week 12 data available for analyses. There were no significant changes in soluble markers, apart from a trend toward decreased levels of soluble CD163 levels (P = .09). There was a modest decrease in CD8+ T-cell activation (-17.53% change for dipyridamole vs +13.31% for placebo; P = .03), but the significance was lost in the pooled analyses (P = .058). Dipyridamole also reduced CD4+ T-cell activation (-11.11% change; P = .006) in the pooled analyses. In post hoc analysis, detectable plasma dipyridamole levels were associated with higher levels of inosine, an adenosine surrogate, and of cyclic adenosine monophosphate. CONCLUSION: Dipyridamole increased extracellular adenosine levels and decreased T-cell activation significantly among persons with HIV-1 infection receiving virally suppressive therapy.


Asunto(s)
Dipiridamol/uso terapéutico , Infecciones por VIH/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/etiología , Inhibidores de Fosfodiesterasa/uso terapéutico , Adolescente , Adulto , Biomarcadores/sangre , Enfermedad Crónica , Método Doble Ciego , Infecciones por VIH/tratamiento farmacológico , VIH-1 , Humanos , Persona de Mediana Edad , Proyectos Piloto , Adulto Joven
6.
Angiogenesis ; 23(4): 599-610, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32419057

RESUMEN

RATIONALE: One hallmark of tumor-derived exosomes (TEX) is the promotion of cancer progression by stimulating angiogenesis. This study was performed to evaluate the role of adenosine receptors in TEX-induced angiogenesis. METHODS: TEX produced by UMSCC47 head and neck cancer cell line were isolated by mini size exclusion chromatography (mini-SEC). Enzymatic activity of ectonucleotidases CD39/CD73 carried by TEX was measured by HPLC. Adenosine content of TEX was measured by UPLC-MS/MS. Primary human macrophages were co-incubated with TEX or exosomes derived from the plasma of head and neck cancer patients and their marker expression profile was analyzed by flow cytometry. The macrophage secretome was analyzed by angiogenesis arrays. The in vitro angiogenic potential of TEX was evaluated in endothelial growth studies. Results were validated in vivo using basement membrane extract plug assays in A1R-/-, A2AR-/- and A2BR-/- rats. Vascularization was analyzed by hemoglobin quantification and immunohistology with vessel and macrophage markers. RESULTS: TEX carried enzymatically active CD39/CD73 and adenosine. TEX promoted A2BR-mediated polarization of macrophages toward an M2-like phenotype (p < 0.05) and enhanced their secretion of angiogenic factors. Growth of endothelial cells was stimulated directly by TEX and indirectly via macrophage-reprogramming dependent on A2BR signaling (p < 0.01). In vivo, TEX stimulated the formation of defined vascular structures and macrophage infiltration. This response was absent in A2BR-/- rats (p < 0.05). CONCLUSION: This report provides the first evidence for adenosine production by TEX to promote angiogenesis via A2BR. A2BR antagonism emerges as a potential strategy to block TEX-induced angiogenesis.


Asunto(s)
Exosomas/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Receptor de Adenosina A2B/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Proliferación Celular , Reprogramación Celular , Exosomas/ultraestructura , Femenino , Neoplasias de Cabeza y Cuello/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Macrófagos/metabolismo , Masculino , Modelos Biológicos , Fenotipo , Ratas
7.
Cancer Immunol Immunother ; 69(7): 1205-1216, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32146518

RESUMEN

BACKGROUND: Multiple mechanisms of immunosuppression have been identified in the tumor microenvironment including regulatory B cells (Breg). Recently, we have shown that Breg suppress T cell function by production of adenosine (ADO). However, the autocrine effect of ADO on B cells and the role of Breg in head and neck cancer remains unclear. METHODS: Blood (n = 42) and tumor tissue (n = 39) of head and neck cancer patients and healthy donors (n = 60) were analyzed by FACS. The effect of ADO on phenotype, intracellular signaling pathways, Ca2+ influx and ADO production was analyzed in Breg and effector B cells (Beff) by FACS, luminescence and mass spectrometry. The blockage of the ADO receptor A2A was analyzed in a murine head and neck cancer model. RESULTS: ADO-producing Breg were found in tumor tissue and peripheral blood. ADO inhibited the intracellular Bruton's tyrosine kinase (BTK) and Ca2+ influx only in Beff. The inhibition of BTK by ibrutinib mimicked the effect of ADO, and ibrutinib reduced the production of ADO by downregulation of CD39 in vitro. The inhibition of ADO receptor A2A significantly reduced tumor mass and increased B cell infiltration, in vivo. CONCLUSION: Our data demonstrate the presence of a novel ADO-producing Breg population within the tumor microenvironment in mice and humans. A new model is proposed on how ADO-producing Breg can influence the function of Beff cells in healthy donors and cancer patients. Thus, the modulation of the ADO pathway in B cells may serve as a therapeutic approach for cancer patients.


Asunto(s)
Adenosina/metabolismo , Linfocitos B Reguladores/inmunología , Neoplasias de Cabeza y Cuello/inmunología , Pirazoles/farmacología , Pirimidinas/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Microambiente Tumoral/inmunología , Adenina/análogos & derivados , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Animales , Apoptosis , Linfocitos B Reguladores/metabolismo , Estudios de Casos y Controles , Proliferación Celular , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/terapia , Humanos , Masculino , Ratones , Piperidinas , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
J Pharmacol Exp Ther ; 373(1): 135-148, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32015161

RESUMEN

By reducing their metabolism, dipeptidyl peptidase 4 inhibition (DPP4I) enhances the effects of numerous peptides including neuropeptide Y1-36 (NPY1-36), peptide YY1-36 (PYY1-36), and SDF-1α Studies show that separately NPY1-36, PYY1-36 and SDF-1α stimulate proliferation of, and collagen production by, cardiac fibroblasts (CFs), preglomerular vascular smooth muscle cells (PGVSMCs), and glomerular mesangial cells (GMCs), particularly in cells isolated from genetically hypertensive rats. Whether certain combinations of these factors, in the absence or presence of DPP4I, are more profibrotic than others is unknown. Here we contrasted 24 different combinations of conditions (DPP4I, hypertensive genotype and physiologic levels [3 nM] of NPY1-36, PYY1-36, or SDF-1α) on proliferation of, and [3H]-proline incorporation by, CFs, PGVSMCs, and GMCs. In all three cell types, the various treatment conditions differentially increased proliferation and [3H]-proline incorporation, with a hypertensive genotype + DPP4I + NPY1-36 + SDF-1α being the most efficacious combination. Although the effects of this four-way combination were similar in male versus female CFs, physiologic (1 nM) concentrations of 2-methoxyestradiol (2ME; nonestrogenic metabolite of 17ß-estradiol), abolished the effects of this combination in both male and female CFs. In conclusion, this study demonstrates that CFs, PGVSMCs, and GMCs are differentially activated by various combinations of NPY1-36, PYY1-36, SDF-1α, a hypertensive genetic background and DPP4I. We hypothesize that as these progrowth conditions accumulate, a tipping point would be reached that manifests in the long term as organ fibrosis and that 2ME would obviate any profibrotic effects of DPP4I, even under the most profibrotic conditions (i.e., hypertensive genotype with high NPY1-36 + SDF-1α levels and low 2ME levels). SIGNIFICANCE STATEMENT: This work elucidates combinations of factors that could contribute to long-term profibrotic effects of dipeptidyl peptidase 4 inhibitors and suggests a novel drug combination that could prevent any potential profibrotic effects of dipeptidyl peptidase 4 inhibitors while augmenting the protective effects of this class of antidiabetic agents.


Asunto(s)
2-Metoxiestradiol/farmacología , Quimiocina CXCL12/sangre , Colágeno/biosíntesis , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Hipertensión/sangre , Neuropéptido Y/sangre , Fragmentos de Péptidos/sangre , 2-Metoxiestradiol/uso terapéutico , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Células Cultivadas , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Femenino , Hipertensión/genética , Hipertensión/patología , Masculino , Péptido YY/sangre , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
9.
Purinergic Signal ; 16(2): 187-211, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32367441

RESUMEN

The goal of this study was to determine the validity of using N6-etheno-bridged adenine nucleotides to evaluate ecto-nucleotidase activity. We observed that the metabolism of N6-etheno-ATP versus ATP was quantitatively similar when incubated with recombinant CD39, ENTPD2, ENTPD3, or ENPP-1, and the quantitative metabolism of N6-etheno-AMP versus AMP was similar when incubated with recombinant CD73. This suggests that ecto-nucleotidases process N6-etheno-bridged adenine nucleotides similarly to endogenous adenine nucleotides. Four cell types rapidly (t1/2, 0.21 to 0.66 h) metabolized N6-etheno-ATP. Applied N6-etheno-ATP was recovered in the medium as N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and surprisingly N6-etheno-adenine; intracellular N6-etheno compounds were undetectable. This suggests minimal cellular uptake, intracellular metabolism, or deamination of these compounds. N6-etheno-ATP, N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and N6-etheno-adenine had little affinity for recombinant A1, A2A, or A2B receptors, for a subset of P2X receptors (3H-α,ß-methylene-ATP binding to rat bladder membranes), or for a subset of P2Y receptors (35S-ATP-αS binding to rat brain membranes), suggesting minimal pharmacological activity. N6-etheno-adenosine was partially converted to N6-etheno-adenine in four different cell types; this was blocked by purine nucleoside phosphorylase (PNPase) inhibition. Intravenous N6-etheno-ATP was quickly metabolized, with N6-etheno-adenine being the main product in naïve rats, but not in rats pretreated with a PNPase inhibitor. PNPase inhibition reduced the urinary excretion of endogenous adenine and attenuated the conversion of exogenous adenosine to adenine in the renal cortex. The N6-etheno-bridge method is a valid technique to assess extracellular metabolism of adenine nucleotides by ecto-nucleotidases. Also, rats express an enzyme with PNPase-like activity that metabolizes N6-etheno-adenosine to N6-etheno-adenine.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina/metabolismo , Purina-Nucleósido Fosforilasa/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Animales , Masculino , Nucleotidasas/metabolismo , Ratas
10.
Purinergic Signal ; 16(2): 231-240, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32440820

RESUMEN

Exosomes, small-sized extracellular vesicles, carry components of the purinergic pathway. The production by cells of exosomes carrying this pathway remains poorly understood. Here, we asked whether type 1, 2A, or 2B adenosine receptors (A1Rs, A2ARs, and A2BRs, respectively) expressed by producer cells are involved in regulating exosome production. Preglomerular vascular smooth muscle cells (PGVSMCs) were isolated from wildtype, A1R-/-, A2AR-/-, and A2BR-/- rats, and exosome production was quantified under normal or metabolic stress conditions. Exosome production was also measured in various cancer cells treated with pharmacologic agonists/antagonists of A1Rs, A2ARs, and A2BRs in the presence or absence of metabolic stress or cisplatin. Functional activity of exosomes was determined in Jurkat cell apoptosis assays. In PGVSMCs, A1R and A2AR constrained exosome production under normal conditions (p = 0.0297; p = 0.0409, respectively), and A1R, A2AR, and A2BR constrained exosome production under metabolic stress conditions. Exosome production from cancer cells was reduced (p = 0.0028) by the selective A2AR agonist CGS 21680. These exosomes induced higher levels of Jurkat apoptosis than exosomes from untreated cells or cells treated with A1R and A2BR agonists (p = 0.0474). The selective A2AR antagonist SCH 442416 stimulated exosome production under metabolic stress or cisplatin treatment, whereas the selective A2BR antagonist MRS 1754 reduced exosome production. Our findings indicate that A2ARs suppress exosome release in all cell types examined, whereas effects of A1Rs and A2BRs are dependent on cell type and conditions. Pharmacologic targeting of cancer with A2AR antagonists may inadvertently increase exosome production from tumor cells.


Asunto(s)
Agonistas del Receptor de Adenosina A2/farmacología , Exosomas/efectos de los fármacos , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Animales , Exosomas/metabolismo , Masculino , Fenetilaminas/farmacología , Ratas , Receptor de Adenosina A1/efectos de los fármacos , Receptor de Adenosina A2A/efectos de los fármacos , Células Tumorales Cultivadas/metabolismo
11.
J Mol Cell Cardiol ; 133: 115-124, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31201797

RESUMEN

Scarcity of gender specific donor hearts highlights the importance of mesenchymal stem cells (MSCs) as a therapeutic tool for heart repair. However, inefficient incorporation, retention, and activity of MSCs in cardiac tissue remain an obstacle. Since surges in follicular estradiol (E2; µmolar-range) trigger tissue remodeling (e.g. ovulation) and E2 exerts beneficial actions on the cardiovascular system, we hypothesized that E2 may promote/improve MSC-mediated cardiac repair processes. Using Wharton's jelly (WJ)-derived MSCs we assessed the effects of E2 on MSC proliferation, directed migration, and engraftment in murine heart slices (using xCELLigence real-time cell-impedance system, DNA quantification, and microscopy) and on MSC-induced angiogenesis in vivo (matrigel plug assay). Protein expression was assessed by Western blotting, ELISA/Luminex, and proteomic analysis; whereas mRNA expression was assessed by qRT-PCR. MSCs expressed estrogen receptors (ERs) -alpha and -beta. E2 promoted MSC proliferation and up-regulated mRNA and protein expression of ER-alpha, ER-beta, extracellular matrix metalloproteinase inducer (EMMPRIN), and matrix metalloproteinase (MMP) -9, yet down-regulated MMP-2 expression. Moreover, E2 up-regulated expression of vascular endothelial growth factor (VEGF)-A, VEGFR-2, vascular cell adhesion protein-1 (VCAM-1), and angiogenin (ANG) and stimulated nitric oxide (NO) production via ER. Proteomic analysis of MSCs showed that E2 up-regulated 47 proteins, down-regulated 7 proteins, and increased the expression of key biochemical components/pathways involved in tissue repair. In MSCs co-cultured with murine heart-slices, E2 significantly induced MSC migration in an ER-alpha-dependent fashion and significantly increased the secretion of MMP-2, MMP-9, ANG, and VEGF. In an in vivo matrigel assay, E2-treated MSCs increased angiogenesis and hemoglobin content. In conclusion, E2-treatment increases the incorporation of MSCs in heart slices and promotes MSC-induced angiogenesis. These beneficial effects are mediated via increases in molecules/pathways involved in tissue remodeling and angiogenesis. We speculate that E2 may enhance MSC ability to repair/regenerate cardiac tissue.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Estradiol/farmacología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Miocardio/citología , Miocardio/metabolismo , Animales , Biomarcadores , Diferenciación Celular/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/citología , Neovascularización Fisiológica/genética , Proteómica/métodos
12.
Am J Physiol Regul Integr Comp Physiol ; 316(6): R783-R790, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30789788

RESUMEN

The discovery in 2009 that 2',3'-cAMP exists in biological systems was rapidly followed by identification of 2',3'-cGMP in cell and tissue extracts. To determine whether 2',3'-cGMP exists in mammals under physiological conditions, we used ultraperformance LC-MS/MS to measure 2',3'-cAMP and 2',3'-cGMP in timed urine collections (via direct bladder cannulation) from 25 anesthetized mice. Urinary excretion rates (means ± SE) of 2',3'-cAMP (15.5 ± 1.8 ng/30 min) and 2',3'-cGMP (17.9 ± 1.9 ng/30 min) were similar. Mice also excreted 2'-AMP (3.6 ± 1.1 ng/20 min) and 3'-AMP (9.5 ± 1.2 ng/min), hydrolysis products of 2',3'-cAMP, and 2'-GMP (4.7 ± 1.7 ng/30 min) and 3'-GMP (12.5 ± 1.8 ng/30 min), hydrolysis products of 2',3'-cGMP. To validate that the chromatographic signals were from these endogenous noncanonical nucleotides, we repeated these experiments in mice (n = 18) lacking 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), an enzyme known to convert 2',3'-cyclic nucleotides to their corresponding 2'-nucleotides. In CNPase-knockout mice, urinary excretions of 2',3'-cAMP, 3'-AMP, 2',3'-cGMP, and 3'-GMP were increased, while urinary excretions of 2'-AMP and 2'-GMP were decreased. Infusions of exogenous 2',3'-cAMP increased urinary excretion of 2',3'-cAMP, 2'-AMP, 3'-AMP, and adenosine, whereas infusions of exogenous 2',3'-cGMP increased excretion of 2',3'-cGMP, 2'-GMP, 3'-GMP, and guanosine. Together, these data suggest the endogenous existence of not only a 2',3'-cAMP-adenosine pathway (2',3'-cAMP → 2'-AMP/3'-AMP → adenosine), which was previously identified, but also a 2',3'-cGMP-guanosine pathway (2',3'-cGMP → 2'-GMP/3'-GMP → guanosine), observed here for the first time. Because it is well known that adenosine and guanosine protect tissues from injury, our data support the concept that both pathways may work together to protect tissues from injury.


Asunto(s)
Nucleótidos de Adenina/orina , Nucleótidos de Guanina/orina , Guanosina/orina , Eliminación Renal , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/metabolismo , Animales , Cromatografía Liquida , Femenino , Masculino , Ratones Noqueados , Espectrometría de Masas en Tándem , Factores de Tiempo , Urinálisis
13.
J Cardiovasc Pharmacol ; 73(3): 165-177, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30839510

RESUMEN

Estradiol may antagonize the adverse cardiovascular effects of angiotensin II (Ang II). We investigated the effects of 2-methoxyestradiol (2-ME), a nonestrogenic estradiol metabolite, on Ang II-induced cardiovascular and renal injury in male rats. First, we determined the effects of 2-ME on Ang II-induced acute changes in blood pressure, renal hemodynamics, and excretory function. Next, we investigated the effects of 2-ME and 2-hydroxyestardiol (2-HE) on hypertension and cardiovascular and renal injury induced by chronic infusion of Ang II. Furthermore, the effects of 2-ME on blood pressure and cardiovascular remodeling in the constricted aorta (CA) rat model and on isoproterenol-induced (ISO) cardiac hypertrophy and fibrosis were examined. 2-ME had no effects on Ang II-induced acute changes in blood pressure, renal hemodynamics, or glomerular filtration rate. Both 2-ME and 2-HE reduced hypertension, cardiac hypertrophy, proteinuria, and mesangial expansion induced by chronic Ang II infusions. In CA rats, 2-ME attenuated cardiac hypertrophy and fibrosis and reduced elevated blood pressure above the constriction. Notably, 2-ME reduced both pressure-dependent (above constriction) and pressure-independent (below constriction) vascular remodeling. 2-ME had no effects on ISO-induced renin release yet reduced ISO-induced cardiac hypertrophy and fibrosis. This study shows that 2-ME protects against cardiovascular and renal injury due to chronic activation of the renin-angiotensin system. This study reports for the first time that in vivo 2-ME reduces trophic (pressure-independent) effects of Ang II and related cardiac and vascular remodeling.


Asunto(s)
2-Metoxiestradiol/farmacología , Presión Sanguínea/efectos de los fármacos , Hipertensión/prevención & control , Hipertrofia Ventricular Izquierda/prevención & control , Enfermedades Renales/prevención & control , Riñón/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Angiotensina II , Animales , Fibrosis , Tasa de Filtración Glomerular/efectos de los fármacos , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Hipertrofia Ventricular Izquierda/inducido químicamente , Hipertrofia Ventricular Izquierda/fisiopatología , Isoproterenol , Riñón/patología , Riñón/fisiopatología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/fisiopatología , Masculino , Ratas Sprague-Dawley , Sistema Renina-Angiotensina/efectos de los fármacos
14.
Neurourol Urodyn ; 38(1): 393-397, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30311671

RESUMEN

AIMS: The goal of this study was to determine whether aging effects the expression of V1a and V2 vasopressin receptors in the urinary bladder mucosa (UBM) and kidney. METHODS: UBM and kidneys were obtained from young (3 months-of-age) and old (25-30 months-of-age) female Fisher 344 rats. Tissue samples were analyzed by western blotting for V1a and V2 receptor expression, and rat plasma levels of vasopressin levels were measured by ELISA. RESULTS: V1a and V2 receptors were detected in both the UBM and kidneys. Aging significantly (P < 0.05) increased the expression of V2 receptors by 2.80 ± 0.52 and 6.52 ± 1.24-fold in the UBM and kidneys, respectively. Aging also increased V1a receptor expression in the kidneys (5.52 ± 1.05 fold; P < 0.05), but not in the UBM. To the best of our knowledge, because this is the first detection of V2 receptors in the mammalian bladder mucosa, we also probed human UBM for V2 receptors and observed high expression in human UBM. Unlike V1a and V2 receptors, aging had only a minor effect on plasma vasopressin levels (8% increase). CONCLUSIONS: V2 receptors are substantially increased in the aging UBM. The role of these receptors in UBM is as yet undefined, but given their presence and action in the kidneys, the possible effect of these receptors in free water regulation should be considered. The large age-related increase in the expression of V2 receptors in both the UBM and kidney may contribute to the effectiveness of desmopressin in age-related nocturia.


Asunto(s)
Envejecimiento/metabolismo , Riñón/metabolismo , Receptores de Vasopresinas/metabolismo , Vejiga Urinaria/metabolismo , Animales , Femenino , Expresión Génica , Ratas , Ratas Endogámicas F344 , Vasopresinas/sangre
15.
Int J Mol Sci ; 21(1)2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31877978

RESUMEN

Pulmonary arterial hypertension (PAH) is a debilitating and progressive disease that predominantly develops in women. Over the past 15 years, cumulating evidence has pointed toward dysregulated metabolism of sex hormones in animal models and patients with PAH. 17ß-estradiol (E2) is metabolized at positions C2, C4, and C16, which leads to the formation of metabolites with different biological/estrogenic activity. Since the first report that 2-methoxyestradiol, a major non-estrogenic metabolite of E2, attenuates the development and progression of experimental pulmonary hypertension (PH), it has become increasingly clear that E2, E2 precursors, and E2 metabolites exhibit both protective and detrimental effects in PH. Furthermore, both experimental and clinical data suggest that E2 has divergent effects in the pulmonary vasculature versus right ventricle (estrogen paradox in PAH). The estrogen paradox is of significant clinical relevance for understanding the development, progression, and prognosis of PAH. This review updates experimental and clinical findings and provides insights into: (1) the potential impacts that pathways of estradiol metabolism (EMet) may have in PAH; (2) the beneficial and adverse effects of estrogens and their precursors/metabolites in experimental PH and human PAH; (3) the co-morbidities and pathological conditions that may alter EMet and influence the development/progression of PAH; (4) the relevance of the intracrinology of sex hormones to vascular remodeling in PAH; and (5) the advantages/disadvantages of different approaches to modulate EMet in PAH. Finally, we propose the three-tier-estrogen effects in PAH concept, which may offer reconciliation of the opposing effects of E2 in PAH and may provide a better understanding of the complex mechanisms by which EMet affects the pulmonary circulation-right ventricular interaction in PAH.


Asunto(s)
Estradiol/metabolismo , Ventrículos Cardíacos , Hipertensión Arterial Pulmonar , Remodelación Vascular , Animales , Modelos Animales de Enfermedad , Femenino , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/fisiopatología
16.
PLoS Pathog ; 12(11): e1005952, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27814401

RESUMEN

The incidence of life-threatening disseminated Candida albicans infections is increasing in hospitalized patients, with fatalities as high as 60%. Death from disseminated candidiasis in a significant percentage of cases is due to fungal invasion of the kidney, leading to renal failure. Treatment of candidiasis is hampered by drug toxicity, the emergence of antifungal drug resistance and lack of vaccines against fungal pathogens. IL-17 is a key mediator of defense against candidiasis. The underlying mechanisms of IL-17-mediated renal immunity have so far been assumed to occur solely through the regulation of antimicrobial mechanisms, particularly activation of neutrophils. Here, we identify an unexpected role for IL-17 in inducing the Kallikrein (Klk)-Kinin System (KKS) in C. albicans-infected kidney, and we show that the KKS provides significant renal protection in candidiasis. Microarray data indicated that Klk1 was upregulated in infected kidney in an IL-17-dependent manner. Overexpression of Klk1 or treatment with bradykinin rescued IL-17RA-/- mice from candidiasis. Therapeutic manipulation of IL-17-KKS pathways restored renal function and prolonged survival by preventing apoptosis of renal cells following C. albicans infection. Furthermore, combining a minimally effective dose of fluconazole with bradykinin markedly improved survival compared to either drug alone. These results indicate that IL-17 not only limits fungal growth in the kidney, but also prevents renal tissue damage and preserves kidney function during disseminated candidiasis through the KKS. Since drugs targeting the KKS are approved clinically, these findings offer potential avenues for the treatment of this fatal nosocomial infection.


Asunto(s)
Candidiasis/inmunología , Interleucina-17/inmunología , Sistema Calicreína-Quinina/inmunología , Enfermedades Renales/inmunología , Enfermedades Renales/microbiología , Animales , Western Blotting , Modelos Animales de Enfermedad , Citometría de Flujo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
J Cardiovasc Pharmacol ; 71(4): 205-214, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29620605

RESUMEN

Heart failure with preserved ejection fraction (HFpEF), a prevalent form of heart failure, is frequently accompanied by the metabolic syndrome and kidney disease. Because current treatment options of HFpEF are limited, evaluation of therapies in experimental models of HFpEF with the metabolic syndrome and kidney disease is needed. In this study, we evaluated the effects of captopril, furosemide, and their combination in aged, obese ZSF1 rats, an animal model of HFpEF with the metabolic syndrome and chronic kidney disease as comorbidities. Captopril (100 mg/kg), furosemide (50 mg/kg), or their combination was administered orally to obese ZSF1 rats aged 20 to 44 weeks. Untreated ZSF1 rats served as controls. After 24 weeks of treatment, captopril significantly lowered systemic blood pressure and attenuated HFpEF as evidenced by significantly reduced left ventricular end diastolic pressures (10.5 ± 1.4 vs. 4.9 ± 1.3 mm Hg in Control vs. Captopril, respectively) and significantly lower left ventricular relaxation time constants (28.1 ± 2.9 vs. 18.3 ± 3.1 ms in Control vs. Captopril, respectively). The captopril-induced improvement in left ventricular function was associated with reduced cardiac hypertrophy, ischemia, necrosis, and vasculitis. Captopril also increased renal blood flow and glomerular filtration rate, reduced renal vascular resistance and proteinuria, and improved renal histology (ie, reduced renal hypertrophy, glomerulosclerosis, and tubular atrophy/dilation). Furosemide alone provided little benefit; moreover, furosemide did not augment the therapeutic benefits of captopril. This study suggests that chronic administration of captopril, but not furosemide, could be beneficial in patients with HFpEF, particularly in those with comorbidities such as obesity, diabetes, and dyslipidemias.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Captopril/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Riñón/efectos de los fármacos , Síndrome Metabólico/tratamiento farmacológico , Insuficiencia Renal Crónica/tratamiento farmacológico , Volumen Sistólico/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Animales , Presión Sanguínea/efectos de los fármacos , Comorbilidad , Modelos Animales de Enfermedad , Diuréticos/farmacología , Quimioterapia Combinada , Furosemida/farmacología , Tasa de Filtración Glomerular/efectos de los fármacos , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/fisiopatología , Riñón/fisiopatología , Masculino , Síndrome Metabólico/complicaciones , Síndrome Metabólico/fisiopatología , Ratas Zucker , Circulación Renal/efectos de los fármacos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/fisiopatología , Sistema Renina-Angiotensina/efectos de los fármacos , Presión Ventricular/efectos de los fármacos
18.
Am J Physiol Renal Physiol ; 312(4): F565-F576, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28100502

RESUMEN

The preglomerular microcirculation of spontaneously hypertensive rats (SHR) is hypersensitive to angiotensin (ANG) II, and studies have shown that this is likely due to enhanced coincident signaling between G protein subunits αq (Gαq; released by ANG II) and ßγ (Gßγ; released by Gi-coupled receptors) to active phospholipase C (PLC). Here we investigated the molecular basis for the enhanced coincident signaling between Gßγ and Gαq in SHR preglomerular vascular smooth muscle cells (PGVSMCs). Because receptor for activated C kinase 1 (RACK1; a scaffolding protein) organizes interactions between Gßγ, Gαq, and PLC, we included RACK1 in this investigation. Cell fractionation studies demonstrated increased levels of membrane (but not cytosolic) Gß, Gαq, PLCß3, and RACK1 in SHR PGVSMCs compared with Wistar-Kyoto rat PGVSMCs. In SHR PGVSMCs, coimmunoprecipitation demonstrated RACK1 binding to Gß and PLCß3, but only at cell membranes. Pertussis toxin (which blocks Gßγ) and U73122 (which blocks PLC) reduced membrane RACK1; however, RACK1 knockdown (shRNA) did not affect membrane levels of Gß, Gαq, or PLCß3 In a novel gel contraction assay, RACK1 knockdown in SHR PGVSMCs attenuated contractions to ANG II and abrogated the ability of neuropeptide Y (which signals via Gßγ) to enhance ANG II-induced contractions. We conclude that in SHR PGVSMCs the enlarged pool of Gßγ and PLCß3 recruits RACK1 to membranes and RACK1 then organizes signaling. Consequently, knockdown of RACK1 prevents coincident signaling between ANG II and the Gi pathway. This is the first study to implicate RACK1 in vascular smooth muscle cell contraction and suggests that RACK1 inhibitors could be effective cardiovascular drugs.


Asunto(s)
Angiotensina II/farmacología , Proteínas de Unión al GTP/metabolismo , Hipertensión/enzimología , Aparato Yuxtaglomerular/irrigación sanguínea , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Células Cultivadas , Modelos Animales de Enfermedad , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Hipertensión/fisiopatología , Masculino , Microvasos/enzimología , Microvasos/fisiopatología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Neuropéptido Y/metabolismo , Fosfolipasa C beta/metabolismo , Unión Proteica , Transporte de Proteínas , Interferencia de ARN , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores de Cinasa C Activada , Transducción de Señal/efectos de los fármacos , Transfección
19.
J Neurochem ; 141(5): 676-693, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28294336

RESUMEN

The early release of adenosine following traumatic brain injury (TBI) suppresses seizures and brain inflammation; thus, it is important to elucidate the cellular sources of adenosine following injurious stimuli triggered by TBI so that therapeutics for enhancing the early adenosine-release response can be optimized. Using mass spectrometry with 13 C-labeled standards, we investigated in cultured rat neurons, astrocytes, and microglia the effects of oxygen-glucose deprivation (OGD; models energy failure), H2 O2 (produces oxidative stress), and glutamate (induces excitotoxicity) on intracellular and extracellular levels of 5'-AMP (adenosine precursor), adenosine, and inosine and hypoxanthine (adenosine metabolites). In neurons, OGD triggered increases in intracellular 5'-AMP (2.8-fold), adenosine (2.6-fold), inosine (2.2-fold), and hypoxanthine (5.3-fold) and extracellular 5'-AMP (2.2-fold), adenosine (2.4-fold), and hypoxanthine (2.5-fold). In neurons, H2 O2 did not affect intracellular or extracellular purines; yet, glutamate increased intracellular adenosine, inosine, and hypoxanthine (1.7-fold, 1.7-fold, and 1.6-fold, respectively) and extracellular adenosine, inosine, and hypoxanthine (2.9-fold, 2.1-fold, and 1.6-fold, respectively). In astrocytes, neither H2 O2 nor glutamate affected intracellular or extracellular purines, and OGD only slightly increased intracellular and extracellular hypoxanthine. Microglia were unresponsive to OGD and glutamate, but were remarkably responsive to H2 O2 , which increased intracellular 5'-AMP (1.6-fold), adenosine (1.6-fold), inosine (2.1-fold), and hypoxanthine (1.6-fold) and extracellular 5'-AMP (5.9-fold), adenosine (4.0-fold), inosine (4.3-fold), and hypoxanthine (1.9-fold). CONCLUSION: Under these particular experimental conditions, cultured neurons are the main contributors to adenosine production/release in response to OGD and glutamate, whereas cultured microglia are the main contributors upon oxidative stress. Developing therapeutics that recruit astrocytes to produce/release adenosine could have beneficial effects in TBI.


Asunto(s)
Adenosina/metabolismo , Corteza Cerebral/citología , Neuroglía/metabolismo , Neuronas/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Embrión de Mamíferos , Metabolismo Energético/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Glucosa/deficiencia , Ácido Glutámico/farmacología , Peróxido de Hidrógeno/farmacología , Hipoxia/patología , L-Lactato Deshidrogenasa/metabolismo , Proteínas de Microfilamentos/metabolismo , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Fosfopiruvato Hidratasa/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley
20.
J Pharmacol Exp Ther ; 363(3): 358-366, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28928119

RESUMEN

8-Aminoguanosine induces diuresis, natriuresis, glucosuria, and antikaliuresis. These effects could be mediated via 8-aminoguanosine's metabolism to 8-aminoguanine. In this study, we tested this hypothesis in anesthetized rats. First, we demonstrated that at 55- to 85-minutes post-i.v. administration, 8-aminoguanosine and 8-aminoguanine (33.5 µmol/kg) significantly increased urine volume [ml/30 min: 8-aminoguanosine from 0.3 ± 0.1 to 0.9 ± 0.1 (mean ± S.E.M.; n = 7); 8-aminoguanine from 0.3 ± 0.1 to 1.5 ± 0.2 (n = 8)], sodium excretion (µmol/30 min: 8-aminoguanosine from 12 ± 5 to 109 ± 21; 8-aminoguanine from 18 ± 8 to 216 ± 31), and glucose excretion (µg/30 min: 8-aminoguanosine from 18 ± 3 to 159 ± 41; 8-aminoguanine from 17 ± 3 to 298 ± 65). Both compounds significantly decreased potassium excretion (µmol/30 min: 8-aminoguanosine from 62 ± 7 to 39 ± 9; 8-aminoguanine from 61 ± 10 to 34 ± 6). Next, we administered 8-aminoguanosine and 8-aminoguanine i.v. (33.5 µmol/kg) and measured renal interstitial (microdialysis probes) 8-aminoguanosine and 8-aminoguanine. The i.v. administration of 8-aminoguanosine and 8-aminoguanine similarly increased renal medullary interstitial levels of 8-aminoguanine [nanograms per milliliter; 8-aminoguanosine from 4 ± 1 to 1025 ± 393 (n = 6), and 8-aminoguanine from 2 ± 1 to 1069 ± 407 (n = 6)]. Finally, we determine the diuretic, natriuretic, glucosuric, and antikaliuretic effects of intrarenal artery infusions of 8-aminoguanosine and 8-aminoguanine (0.1, 0.3, and 1 µmol/kg/min). 8-Aminoguanine increased urine volume and sodium and glucose excretion by the ipsilateral kidney, yet had only mild effects at the highest dose in the contralateral kidney. Intrarenal infusions of 8-aminoguanosine did not induce diuresis, natriuresis, or glucosuria in either the ipsilateral or contralateral kidney, yet decreased potassium excretion in the ipsilateral kidney. Together these data confirm that the diuretic, natriuretic, and glucosuric effects of 8-aminoguanosine are not direct, but require metabolism to 8-aminoguanine. However, 8-aminoguanosine has direct antikaliuretic effects.


Asunto(s)
Diuréticos/farmacología , Glucosuria/orina , Guanina/análogos & derivados , Guanosina/análogos & derivados , Hiperpotasemia/tratamiento farmacológico , Natriuréticos/farmacología , Animales , Diuréticos/metabolismo , Guanina/metabolismo , Guanina/farmacología , Guanosina/metabolismo , Guanosina/farmacología , Guanosina/uso terapéutico , Hiperpotasemia/metabolismo , Médula Renal/efectos de los fármacos , Médula Renal/metabolismo , Masculino , Natriuréticos/metabolismo , Ratas Sprague-Dawley , Urodinámica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA