RESUMEN
Stable transgenesis is a transformative tool in model organism biology. Although the sea urchin is one of the oldest animal models in cell and developmental biology, studies in this animal have largely relied on transient manipulation of wild animals, without a strategy for stable transgenesis. Here, we build on recent progress to develop a more genetically tractable sea urchin species, Lytechinus pictus, and establish a robust transgene integration method. Three commonly used transposons (Minos, Tol2 and piggyBac) were tested for non-autonomous transposition, using plasmids containing a polyubiquitin promoter upstream of a H2B-mCerulean nuclear marker. Minos was the only transposable element that resulted in significant expression beyond metamorphosis. F0 animals were raised to sexual maturity, and spawned to determine germline integration and transgene inheritance frequency, and to characterize expression patterns of the transgene in F1 progeny. The results demonstrate transgene transmission through the germline, the first example of a germline transgenic sea urchin and, indeed, of any echinoderm. This milestone paves the way for the generation of diverse transgenic resources that will dramatically enhance the utility, reproducibility and efficiency of sea urchin research.
Asunto(s)
Animales Modificados Genéticamente , Elementos Transponibles de ADN , Técnicas de Transferencia de Gen , Células Germinativas , Lytechinus , Transgenes , Animales , Elementos Transponibles de ADN/genética , Células Germinativas/metabolismo , Lytechinus/genética , Femenino , Masculino , Erizos de Mar/genética , Membranas Asociadas a MitocondriasRESUMEN
Sea urchins are premier model organisms for the study of early development. However, the lengthy generation times of commonly used species have precluded application of stable genetic approaches. Here, we use the painted sea urchin Lytechinus pictus to address this limitation and to generate a homozygous mutant sea urchin line. L. pictus has one of the shortest generation times of any currently used sea urchin. We leveraged this advantage to generate a knockout mutant of the sea urchin homolog of the drug transporter ABCB1, a major player in xenobiotic disposition for all animals. Using CRISPR/Cas9, we generated large fragment deletions of ABCB1 and used these readily detected deletions to rapidly genotype and breed mutant animals to homozygosity in the F2 generation. The knockout larvae are produced according to expected Mendelian distribution, exhibit reduced xenobiotic efflux activity and can be grown to maturity. This study represents a major step towards more sophisticated genetic manipulation of the sea urchin and the establishment of reproducible sea urchin animal resources.
Asunto(s)
Lytechinus , Xenobióticos , Animales , Técnicas Genéticas , Larva/genética , Lytechinus/genética , Erizos de Mar/genéticaRESUMEN
Echinoderms are a phylum of marine invertebrates that include model organisms, keystone species, and animals commercially harvested for seafood. Despite their scientific, ecological, and economic importance, there is little known about the diversity of RNA viruses that infect echinoderms compared to other invertebrates. We screened over 900 transcriptomes and viral metagenomes to characterize the RNA virome of 38 echinoderm species from all five classes (Crinoidea, Holothuroidea, Asteroidea, Ophiuroidea and Echinoidea). We identified 347 viral genome fragments that were classified to genera and families within nine viral orders - Picornavirales, Durnavirales, Martellivirales, Nodamuvirales, Reovirales, Amarillovirales, Ghabrivirales, Mononegavirales, and Hepelivirales. We compared the relative viral representation across three life stages (embryo, larvae, adult) and characterized the gene content of contigs which encoded complete or near-complete genomes. The proportion of viral reads in a given transcriptome was not found to significantly differ between life stages though the majority of viral contigs were discovered from transcriptomes of adult tissue. This study illuminates the biodiversity of RNA viruses from echinoderms, revealing the occurrence of viral groups in natural populations.
Asunto(s)
ARN , Viroma , Animales , Biodiversidad , Equinodermos/genética , Filogenia , Análisis de Secuencia de ADN , Viroma/genéticaRESUMEN
A viral etiology of sea star wasting syndrome (SSWS) was originally explored with virus-sized material challenge experiments, field surveys, and metagenomics, leading to the conclusion that a densovirus is the predominant DNA virus associated with this syndrome and, thus, the most promising viral candidate pathogen. Single-stranded DNA viruses are, however, highly diverse and pervasive among eukaryotic organisms, which we hypothesize may confound the association between densoviruses and SSWS. To test this hypothesis and assess the association of densoviruses with SSWS, we compiled past metagenomic data with new metagenomic-derived viral genomes from sea stars collected from Antarctica, California, Washington, and Alaska. We used 179 publicly available sea star transcriptomes to complement our approaches for densovirus discovery. Lastly, we focus the study on sea star-associated densovirus (SSaDV), the first sea star densovirus discovered, by documenting its biogeography and putative tissue tropism. Transcriptomes contained only endogenized densovirus elements similar to the NS1 gene, while numerous extant densoviral genomes were recovered from viral metagenomes. SSaDV was associated with nearly all tested species from southern California to Alaska, and in contrast to previous work, we show that SSaDV is one genotype among a high diversity of densoviruses present in sea stars across the West Coast of the United States and globally that are commonly associated with grossly normal (i.e., healthy or asymptomatic) animals. The diversity and ubiquity of these viruses in sea stars confound the original hypothesis that one densovirus is the etiological agent of SSWS.IMPORTANCE The primary interest in sea star densoviruses, specifically SSaDV, has been their association with sea star wasting syndrome (SSWS), a disease that has decimated sea star populations across the West Coast of the United States since 2013. The association of SSaDV with SSWS was originally drawn from metagenomic analysis, which was further studied through field surveys using quantitative PCR (qPCR), with the conclusion that it was the most likely viral candidate in the metagenomic data based on its representation in symptomatic sea stars compared to asymptomatic sea stars. We reexamined the original metagenomic data with additional genomic data sets and found that SSaDV was 1 of 10 densoviruses present in the original data set and was no more represented in symptomatic sea stars than in asymptomatic sea stars. Instead, SSaDV appears to be a widespread, generalist virus that exists among a large diversity of densoviruses present in sea star populations.
Asunto(s)
Densovirus/genética , Estrellas de Mar/virología , Secuencias de Aminoácidos , Animales , Densovirus/clasificación , Densovirus/fisiología , Variación Genética , Genoma Viral/genética , Geografía , Metagenoma , Filogenia , Estrellas de Mar/genética , Transcriptoma , Proteínas Virales/genética , Tropismo ViralRESUMEN
The etiology of sea star wasting syndrome is hypothesized to be caused by a densovirus, sea star-associated densovirus (SSaDV), that has previously been reported on the Pacific and Atlantic Coasts of the United States. In this study, we reevaluated the presence of SSaDV among sea stars from the North American Atlantic Coast and in doing so discovered a novel densovirus that we have named Asterias forbesi-associated densovirus (AfaDV), which shares 78% nucleotide pairwise identity with SSaDV. In contrast to previous studies, SSaDV was not detected in sea stars from the North American Atlantic Coast. Using a variety of PCR-based techniques, we investigated the tissue tropism, host specificity, and prevalence of AfaDV among populations of sea stars at five locations along the Atlantic Coast. AfaDV was detected in three sea star species (Asterias forbesi, Asterias rubens, and Henricia sp.) found in this region and was highly prevalent (>80% of individuals tested; n = 134), among sampled populations. AfaDV was detected in the body wall, gonads, and pyloric caeca (digestive gland) of specimens but was not detected in their coelomic fluid. A significant difference in viral load (copies mg-1) was found between tissue types, with the pyloric caeca having the highest viral loads. Further investigation of Asterias forbesi gonad tissue found germ line cells (oocytes) to be virus positive, suggesting a potential route of vertical transmission. Taken together, these observations show that the presence of AfaDV is not an indicator of sea star wasting syndrome because AfaDV is a common constituent of these animals' microbiome, regardless of health.IMPORTANCE Sea star wasting syndrome is a disease primarily observed on the Pacific and Atlantic Coasts of North America that has significantly impacted sea star populations. The etiology of this disease is unknown, although it is hypothesized to be caused by a densovirus, SSaDV. However, previous studies have not found a correlation between SSaDV and sea star wasting syndrome on the North American Atlantic Coast. This study suggests that this observation may be explained by the presence of a genetically similar densovirus, AfaDV, that may have confounded previous studies. SSaDV was not present in sea stars screened in this study, and instead, AfaDV was commonly found in sea star populations across the New England region, with no apparent signs of disease. These results suggest that sea star densoviruses may be common constituents of the animals' microbiome, and the diversity and extent of these viruses among wild populations may be greater than previously recognized.
Asunto(s)
Asterias/virología , Densovirus/clasificación , Animales , Densovirus/aislamiento & purificación , Densovirus/fisiología , Femenino , Masculino , New EnglandRESUMEN
Recent studies of mammalian microbiomes have identified strong phylogenetic effects on bacterial community composition. Bats (Mammalia: Chiroptera) are among the most speciose mammals on the planet and the only mammal capable of true flight. We examined 1,236 16S rRNA amplicon libraries of the gut, oral, and skin microbiota from 497 Afrotropical bats (representing 9 families, 20 genera, and 31 species) to assess the extent to which host ecology and phylogeny predict microbial community similarity in bats. In contrast to recent studies of host-microbe associations in other mammals, we found no correlation between chiropteran phylogeny and bacterial community dissimilarity across the three anatomical sites sampled. For all anatomical sites, we found host species identity and geographic locality to be strong predictors of microbial community composition and observed a positive correlation between elevation and bacterial richness. Last, we identified significantly different bacterial associations within the gut microbiota of insectivorous and frugivorous bats. We conclude that the gut, oral, and skin microbiota of bats are shaped predominantly by ecological factors and do not exhibit the same degree of phylosymbiosis observed in other mammals.IMPORTANCE This study is the first to provide a comprehensive survey of bacterial symbionts from multiple anatomical sites across a broad taxonomic range of Afrotropical bats, demonstrating significant associations between the bat microbiome and anatomical site, geographic locality, and host identity-but not evolutionary history. This study provides a framework for future systems biology approaches to examine host-symbiont relationships across broad taxonomic scales, emphasizing the need to elucidate the interplay between host ecology and evolutionary history in shaping the microbiome of different anatomical sites.
RESUMEN
Decades of research have demonstrated the crucial importance of viruses in freshwater ecosystems. However, few studies have focused on the seasonal dynamics and potential hosts of RNA viruses. We surveyed microbial-sized (i.e. 5-0.2 µm) mixed community plankton transcriptomes for RNA viral genomes and investigated their distribution between microbial and macrobial plankton over a seasonal cycle across three temperate lakes by quantitative reverse transcriptase PCR (qRT-PCR). A total of 30 contigs bearing similarity to RNA viral genomes were recovered from a global assembly of 30 plankton RNA libraries. Of these, only 13 were found in >2 libraries and recruited >100 reads (of 9.13 x 107 total reads), representing several picornaviruses, two tobamoviruses and a reovirus. We quantified the abundance of four picornaviruses and the reovirus monthly from August 2014 to May 2015. Patterns of viral abundance in the >5 µm size fraction and representation in microbial-sized community RNA libraries over time suggest that one picornavirus genotype (TS24835) and the reovirus (TS148892) may infect small (<5 µm) eukaryotic microorganisms, while two other picornaviruses (TS24641 and TS4340) may infect larger (>5 µm) eukaryotic microorganisms or metazoa. Our data also suggest that picornavirus TS152062 may originate from an allochthonous host. All five viral genotypes were present in at least one size fraction across all 3 lakes during the year, suggesting that RNA viruses may easily disperse between adjacent aquatic habitats. Our data therefore demonstrate that RNA viruses are widespread in temperate lacustrine ecosystems, and may provide evidence of viral infection in larger eukaryotes (including metazoa) inhabiting the lakes.
Asunto(s)
Lagos/virología , Virus ARN/genética , ARN Viral/genética , Estaciones del Año , Ecosistema , Perfilación de la Expresión Génica , Regulación Viral de la Expresión Génica , Genoma Viral/genética , Genotipo , New York , Filogenia , Picornaviridae/clasificación , Picornaviridae/genética , Plancton/virología , Virus ARN/clasificación , Reoviridae/clasificación , Reoviridae/genética , Tobamovirus/clasificación , Tobamovirus/genéticaRESUMEN
Sea stars are among the most important predators in benthic ecosystems worldwide which is partly attributed to their unique gastrointestinal features and feeding behaviors. Despite their ecological importance, the microbiome of these animals and its influence on adult host health and development largely remains unknown. To begin to understand such interactions we sought to understand what bacteria are associated with these animals, how the microbiome is partitioned across regions of the body and how seawater influences their microbiome. We analyzed the microbiome composition of a geographically and taxonomically diverse set of sea star taxa by using 16S rRNA gene amplicon sequencing and compared microorganisms associated with different regions of their body and to their local environment. In addition, we estimated the bacterial and coelomocyte abundance in the sea star coelomic fluid and bacterioplankton abundance in the surrounding seawater via epifluorescence microscopy. The average bacterial cell abundance observed in the coelomic fluid was one to two orders of magnitude lower than the bacterioplankton abundance in the surrounding seawater suggesting a selection against the presence of microorganisms in the coelomic fluid. The sea star microbiome was also significantly different from seawater with relatively few shared microbial taxa. Microbial communities were found to be significantly different between the pyloric caeca, gonads, coelomic fluid, and body wall of the animals. The most noticeable difference between anatomical sites was the greater relative abundance of Spirochaetae and Tenericutes found in hard tissues (gonads, pyloric caeca, and body wall) than in the coelomic fluid. The microbiome of sea stars thus appears to be anatomically partitioned, distinct from the microbial community of seawater and contains a relatively low abundance of bacteria within the coelomic cavity.
RESUMEN
Echinoderms are prone to large population fluctuations that can be mediated by pervasive disease events. For the majority of echinoderm disease events the causative pathogen is unknown. Viruses have only recently been explored as potential pathogens using culture-independent techniques though little information currently exists on echinoderm viruses. In this study, ten circular ssDNA viruses were discovered in tissues among an asteroid (Asterias forbesi), an echinoid (Strongylocentrotus droebachiensis) and a holothurian (Parastichopus californicus) using viral metagenomics. Genome architecture and sequence similarity place these viruses among the rapidly expanding circular rep-encoding single stranded (CRESS) DNA viral group. Multiple genomes from the same tissue were no more similar in sequence identity to each other than when compared to other known CRESS DNA viruses. The results from this study are the first to describe a virus from a holothurian and continue to show the ubiquity of these viruses among aquatic invertebrates.