Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36768957

RESUMEN

Celiac disease (CD) represents a frequent autoimmune disease triggered by the ingestion of gliadin in genetically predisposed individuals. The alteration of enterocytes and brush border membrane morphology have been repetitively demonstrated, but the underlying mechanisms remain unclear. Microtubules represent a major element of the cytoskeleton and exert multiple functions depending on their tyrosination status. The aim of our study was to investigate whether posttranslational modification of microtubules was altered in the context of CD and whether this mechanism contributed to morphological changes of CD enterocytes. We examined the expression of tubulin tyrosine ligase (TTL) and vasohibin-2 (VASH2) and the level of detyrosinated and acetylated tubulin in duodenal biopsies and Caco-2 cells by immunoblot and immunofluorescence microcopy. Electron microscopy was performed to investigate the subcellular distribution of detyrosinated tubulin and brush border membrane architecture in CD biopsies and Madin-Darby Canine Kidney type II (MDCK) cells lacking TTL. CD enterocytes and Caco-2 cells stimulated with digested gliadin or IFN-y displayed a flattened cell morphology. This disturbed cellular architecture was accompanied by an increased amount of detyrosinated and acetylated tubulin and corresponding high expression of VASH2 and low expression of TTL. The altered posttranslational modification of tubulin was reversible after the introduction of the gluten-free diet. CD enterocytes and MDCK cells deficient in TTL displayed a reduced cell height along with an increased cell width and a reduced number of apical microvilli. Our results provide a functional explanation for the observed morphological alterations of the enterocytes observed in CD and provide diagnostic potential of the tyrosination status of microtubules as an early marker of villous atrophy and CD inflammation.


Asunto(s)
Enfermedad Celíaca , Tubulina (Proteína) , Humanos , Animales , Perros , Tubulina (Proteína)/metabolismo , Enterocitos/metabolismo , Células CACO-2 , Enfermedad Celíaca/metabolismo , Gliadina/metabolismo , Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , Tirosina/metabolismo , Proteínas Angiogénicas/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(19): E4396-E4405, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29686075

RESUMEN

The beta-galactoside binding lectin galectin-3 (Gal3) is found intracellularly and in the extracellular space. Secretion of this lectin is mediated independently of the secretory pathway by a not yet defined nonclassical mechanism. Here, we found Gal3 in the lumen of exosomes. Superresolution and electron microscopy studies visualized Gal3 recruitment and sorting into intraluminal vesicles. Exosomal Gal3 release depends on the endosomal sorting complex required for transport I (ESCRT-I) component Tsg101 and functional Vps4a. Either Tsg101 knockdown or expression of dominant-negative Vps4aE228Q causes an intracellular Gal3 accumulation at multivesicular body formation sites. In addition, we identified a highly conserved tetrapeptide P(S/T)AP motif in the amino terminus of Gal3 that mediates a direct interaction with Tsg101. Mutation of the P(S/T)AP motif results in a loss of interaction and a dramatic decrease in exosomal Gal3 secretion. We conclude that Gal3 is a member of endogenous non-ESCRT proteins which are P(S/T)AP tagged for exosomal release.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Exosomas/metabolismo , Galectina 3/metabolismo , Cuerpos Multivesiculares/metabolismo , Factores de Transcripción/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Perros , Endosomas/ultraestructura , Exosomas/ultraestructura , Células de Riñón Canino Madin Darby , Microscopía Electrónica , Cuerpos Multivesiculares/ultraestructura
3.
Traffic ; 19(12): 947-964, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30246279

RESUMEN

A highly specific transport and sorting machinery directing secretory cargo to the apical or basolateral plasma membrane maintains the characteristic polarized architecture of epithelial cells. This machinery comprises a defined set of transport carriers, which are crucial for cargo delivery to the correct membrane domain. Each carrier is composed of a distinct set of proteins to verify precise routing and cargo selection. Among these components, the dynamin-related GTPase Mx1 was identified on post-Golgi vesicles destined for the apical membrane of MDCK cells. In addition to the presence on late secretory compartments, Mx1 was also detected on compartments of the early secretory pathway. Vesicular structures positive for this GTPase are highly dynamic, and we have studied the influence of the microtubule cytoskeleton on this motility. Live-cell microscopy indicated that microtubule disruption using nocodazole inhibits long-range trafficking of these structures. Mx1 directly or indirectly interacts with α-tubulin and the kinesin motor Kif5B as assessed by coimmunoprecipitation. In agreement with these observations knock out of Mx1 or a mutation in the unstructured L4 loop of Mx1 decreases the efficiency of apical cargo delivery. Interestingly, the L4 loop mutant still interacts with Kif5B; however, it causes vesicle elongation. This suggests that Mx1 aids in vesicle fission and stabilizes the interaction between Kif5B, microtubules and apical transport carriers.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Resistencia a Mixovirus/metabolismo , Animales , Sitios de Unión , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Perros , Células de Riñón Canino Madin Darby , Proteínas de Resistencia a Mixovirus/química , Unión Proteica , Señales de Clasificación de Proteína , Transporte de Proteínas , Vesículas Secretoras/metabolismo , Tubulina (Proteína)/metabolismo
4.
J Cell Sci ; 131(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717004

RESUMEN

Galectins are carbohydrate-binding proteins that are involved in many physiological functions, such as inflammation, immune responses, cell migration, autophagy and signalling. They are also linked to diseases such as fibrosis, cancer and heart disease. How such a small family of only 15 members can have such widespread effects remains a conundrum. In this Cell Science at a Glance article, we summarise recent literature on the many cellular activities that have been ascribed to galectins. As shown on the accompanying poster, these include carbohydrate-independent interactions with cytosolic or nuclear targets and carbohydrate-dependent interactions with extracellular glycoconjugates. We discuss how these intra- and extracellular activities might be linked and point out the importance of unravelling molecular mechanisms of galectin function to gain a true understanding of their contributions to the physiology of the cell. We close with a short outlook on the organismal functions of galectins and a perspective on the major challenges in the field.


Asunto(s)
Galectinas/metabolismo , Animales , Humanos , Transducción de Señal
5.
J Cell Sci ; 131(11)2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29748377

RESUMEN

Epithelial cells require a precise intracellular transport and sorting machinery to establish and maintain their polarized architecture. This machinery includes ß-galactoside-binding galectins for targeting of glycoprotein to the apical membrane. Galectin-3 sorts cargo destined for the apical plasma membrane into vesicular carriers. After delivery of cargo to the apical milieu, galectin-3 recycles back into sorting organelles. We analysed the role of galectin-3 in the polarized distribution of ß1-integrin in MDCK cells. Integrins are located primarily at the basolateral domain of epithelial cells. We demonstrate that a minor pool of ß1-integrin interacts with galectin-3 at the apical plasma membrane. Knockdown of galectin-3 decreases apical delivery of ß1-integrin. This loss is restored by supplementation with recombinant galectin-3 and galectin-3 overexpression. Our data suggest that galectin-3 targets newly synthesized ß1-integrin to the apical membrane and promotes apical delivery of ß1-integrin internalized from the basolateral membrane. In parallel, knockout of galectin-3 results in a reduction in cell proliferation and an impairment in proper cyst development. Our results suggest that galectin-3 modulates the surface distribution of ß1-integrin and affects the morphogenesis of polarized cells.


Asunto(s)
Polaridad Celular , Células Epiteliales/metabolismo , Galectina 3/metabolismo , Integrina beta1/metabolismo , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Proliferación Celular , Perros , Células Epiteliales/citología , Galectina 3/genética , Integrina beta1/genética , Células de Riñón Canino Madin Darby , Transporte de Proteínas
6.
EMBO Rep ; 19(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29263199

RESUMEN

MicroRNAs are important regulators of local protein synthesis during neuronal development. We investigated the dynamic regulation of microRNA production and found that the majority of the microRNA-generating complex, consisting of Dicer, TRBP, and PACT, specifically associates with intracellular membranes in developing neurons. Stimulation with brain-derived neurotrophic factor (BDNF), which promotes dendritogenesis, caused the redistribution of TRBP from the endoplasmic reticulum into the cytoplasm, and its dissociation from Dicer, in a Ca2+-dependent manner. As a result, the processing of a subset of neuronal precursor microRNAs, among them the dendritically localized pre-miR16, was impaired. Decreased production of miR-16-5p, which targeted the BDNF mRNA itself, was rescued by expression of a membrane-targeted TRBP Moreover, miR-16-5p or membrane-targeted TRBP expression blocked BDNF-induced dendritogenesis, demonstrating the importance of neuronal TRBP dynamics for activity-dependent neuronal development. We propose that neurons employ specialized mechanisms to modulate local gene expression in dendrites, via the dynamic regulation of microRNA biogenesis factors at intracellular membranes of the endoplasmic reticulum, which in turn is crucial for neuronal dendrite complexity and therefore neuronal circuit formation and function.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Dendritas/genética , MicroARNs/genética , Neurogénesis/genética , Coactivadores de Receptor Nuclear/genética , Animales , ARN Helicasas DEAD-box/genética , Embrión de Mamíferos , Desarrollo Embrionario/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Neuronas/metabolismo , Proteínas de Unión al ARN/genética , Ratas , Ribonucleasa III/genética
7.
Cell Mol Life Sci ; 76(1): 193-207, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30317528

RESUMEN

The posttranslational modification (PTM) of tubulin subunits is important for the physiological functions of the microtubule (MT) cytoskeleton. Although major advances have been made in the identification of enzymes carrying out MT-PTMs, little knowledge is available on how intercellular signaling molecules and their associated pathways regulate MT-PTM-dependent processes inside signal-receiving cells. Here we show that Hedgehog (Hh) signaling, a paradigmatic intercellular signaling system, affects the MT acetylation state in mammalian cells. Mechanistically, Hh pathway activity increases the levels of the MT-associated DYRK1B kinase, resulting in the inhibition of GSK3ß through phosphorylation of Serine 9 and the subsequent suppression of HDAC6 enzyme activity. Since HDAC6 represents a major tubulin deacetylase, its inhibition increases the levels of acetylated MTs. Through the activation of DYRK1B, Hh signaling facilitates MT-dependent processes such as intracellular mitochondrial transport, mesenchymal cell polarization or directed cell migration. Taken together, we provide evidence that intercellular communication through Hh signals can regulate the MT cytoskeleton and contribute to MT-dependent processes by affecting the level of tubulin acetylation.


Asunto(s)
Proteínas Hedgehog/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Acetilación , Animales , Movimiento Celular , Polaridad Celular , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Fosforilación , Tubulina (Proteína)/metabolismo , Quinasas DyrK
8.
J Cell Sci ; 130(11): 1890-1903, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28420671

RESUMEN

Protein tyrosine kinase 7 (PTK7) is an evolutionarily conserved transmembrane receptor with important roles in embryonic development and disease. Originally identified as a gene upregulated in colon cancer, it was later shown to regulate planar cell polarity (PCP) and directional cell movement. PTK7 is a Wnt co-receptor; however, its role in Wnt signaling remains controversial. Here, we find evidence that places PTK7 at the intersection of canonical and non-canonical Wnt signaling pathways. In presence of canonical Wnt ligands PTK7 is subject to caveolin-mediated endocytosis, while it is unaffected by non-canonical Wnt ligands. PTK7 endocytosis is dependent on the presence of the PTK7 co-receptor Fz7 (also known as Fzd7) and results in lysosomal degradation of PTK7. As we previously observed that PTK7 activates non-canonical PCP Wnt signaling but inhibits canonical Wnt signaling, our data suggest a mutual inhibition of canonical and PTK7 Wnt signaling. PTK7 likely suppresses canonical Wnt signaling by binding canonical Wnt ligands thereby preventing their interaction with Wnt receptors that would otherwise support canonical Wnt signaling. Conversely, if canonical Wnt proteins interact with the PTK7 receptor, they induce its internalization and degradation.


Asunto(s)
Caveolina 1/genética , Moléculas de Adhesión Celular/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Wnt/genética , Vía de Señalización Wnt , Proteína Wnt3A/genética , Animales , Caveolina 1/metabolismo , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Clatrina/genética , Clatrina/metabolismo , Embrión no Mamífero , Endocitosis , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ligandos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Células MCF-7 , Unión Proteica , Estabilidad Proteica , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt3A/metabolismo , Xenopus laevis , beta Catenina/genética , beta Catenina/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(52): E8433-E8442, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27956623

RESUMEN

Mutations in the p53 tumor suppressor gene are the most frequent genetic alteration in cancer and are often associated with progression from benign to invasive stages with metastatic potential. Mutations inactivate tumor suppression by p53, and some endow the protein with novel gain of function (GOF) properties that actively promote tumor progression and metastasis. By comparative gene expression profiling of p53-mutated and p53-depleted cancer cells, we identified ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5) as a mutant p53 target gene, which functions as a uridine 5'-diphosphatase (UDPase) in the endoplasmic reticulum (ER) to promote the folding of N-glycosylated membrane proteins. A comprehensive pan-cancer analysis revealed a highly significant correlation between p53 GOF mutations and ENTPD5 expression. Mechanistically, mutp53 is recruited by Sp1 to the ENTPD5 core promoter to induce its expression. We show ENTPD5 to be a mediator of mutant p53 GOF activity in clonogenic growth, architectural tissue remodeling, migration, invasion, and lung colonization in an experimental metastasis mouse model. Our study reveals folding of N-glycosylated membrane proteins in the ER as a mechanism underlying the metastatic progression of tumors with mutp53 that could provide new possibilities for cancer treatment.


Asunto(s)
Retículo Endoplásmico/metabolismo , Metástasis de la Neoplasia , Proteínas Oncogénicas/metabolismo , Pirofosfatasas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/fisiología , Animales , Apoptosis , Calnexina/metabolismo , Calreticulina/metabolismo , Carcinogénesis/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Femenino , Glicoproteínas/metabolismo , Glicosilación , Humanos , Masculino , Ratones , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología , Mutación , Invasividad Neoplásica , Pronóstico , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factor de Transcripción Sp1/metabolismo
10.
Biochem Cell Biol ; 95(4): 500-509, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28314111

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are essential constituents of the intracellular trafficking machinery. The variable C-terminus in the 2 rat VAMP-1 splice isoforms VAMP-1a and -1b potentially acts as a sorting signal, because similar changes at the C-terminal end of a human VAMP-1 splice isoform resulted in its sorting to mitochondria. To evaluate the differences in the subcellular localization of these two v-SNARE proteins, VAMP-1a and -1b proteins tagged with green fluorescent protein (GFP) and red fluorescent protein (RFP) were expressed in HeLa, COS-7, and MDCK cells and evaluated by conventional confocal as well as total internal reflection fluorescence microscopy. Regions consistent with the endoplasmic reticulum and Golgi apparatus demonstrated a major overlap of both signals. In the periphery, vesicular structures were observed that mainly expressed one of the 2 isoforms. Within our experimental settings, we could not observe sorting of any of the 2 isoforms to mitochondria or peroxisomes, whereas both isoforms were found expressed in a minor subset of singular vesicles, which sporadically appeared to co-localize with the exocyst marker EXOC3/Sec6. Because vesicular structures were seen that expressed only one of the two splice variants, it is possible that VAMP-1a and VAMP-1b are sorted to distinct cellular compartments that require further characterization.


Asunto(s)
Proteína 1 de Membrana Asociada a Vesículas/genética , Proteína 1 de Membrana Asociada a Vesículas/metabolismo , Animales , Humanos , Microscopía Fluorescente , Isoformas de Proteínas/análisis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Células Tumorales Cultivadas , Proteína 1 de Membrana Asociada a Vesículas/análisis
11.
Traffic ; 15(9): 983-96, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24931707

RESUMEN

In epithelial cells apical proteins are transported by specific transport carriers to the correct membrane domain. The composition of these carriers is heterogeneous and comprises components such as motor proteins, annexins, lectins, Rab GTPases and cargo molecules. Here, we provide biochemical and fluorescence microscopic data to show that the dynamin-related large GTPase Mx1 is a component of post-Golgi vesicles carrying the neurotrophin receptor p75(NTR) . Moreover, siRNA-mediated depletion of Mx1 significantly decreased the transport efficiency of apical proteins in MDCK cells. In conclusion, Mx1 plays a crucial role in the delivery of cargo molecules to the apical membrane of epithelial cells.


Asunto(s)
Células Epiteliales/metabolismo , GTP Fosfohidrolasas/metabolismo , Transporte de Proteínas/fisiología , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Membrana Celular/metabolismo , Perros , Aparato de Golgi/metabolismo , Células de Riñón Canino Madin Darby , Microscopía Fluorescente/métodos , Receptor de Factor de Crecimiento Nervioso/metabolismo
12.
BMC Cancer ; 16: 502, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27435226

RESUMEN

BACKGROUND: The multifunctional ß-galactoside-binding protein galectin-3 is found in many distinct subcellular compartments including the cell nucleus. Expression and distribution of galectin-3 between the cell nucleus and the cytosol changes during cell differentiation and cancer development. Nuclear functions of galectin-3 and how they contribute to tumorigenesis are not understood. METHODS: In order to identify nuclear galectin-3 interaction partners, we used affinity chromatography and co-immunoprecipitation. Spatial proximity in the nucleus was assessed by immunofluorescence and proximity ligation assay. We also investigated the function of galectin-3 on mRNA-export by fluorescence in situ hybridization and on mRNA-processing by RNA-sequencing. RESULTS: The heterogeneous ribonucleoprotein particle component hnRNPA2B1 was identified as a novel galectin-3 binding protein that associates with the lectin in a lactose-dependent manner in the cell nucleus. Specific individual depletion of galectin-3 does not affect the mRNA distribution between cytoplasm and nucleus. A significant alteration of this distribution was observed after combined depletion of galectin-1 and -3. However, silencing of galectin-3 was sufficient to alter the splicing patterns of several genes. CONCLUSIONS: Galectin-3 and hnRNPA2B1 interact as members of the early splicing machinery. Galectin-3 and -1 have redundant functions in mRNA transport and at least in part in mRNA splicing. RNA-sequencing data points to a specific function of the hnRNPA2B1/galectin-3 interaction in the processing of transcripts coding for the nuclear oncoprotein SET.


Asunto(s)
Núcleo Celular/genética , Galectina 3/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , ARN Mensajero/genética , Núcleo Celular/metabolismo , Galectina 3/metabolismo , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Unión Proteica , Interferencia de ARN , Empalme del ARN , Transporte de ARN , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN/métodos
13.
Traffic ; 14(9): 1014-27, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23710780

RESUMEN

The ß-galactoside binding protein galectin-3 is highly expressed in a variety of epithelial cell lines. Polarized MDCK cells secrete this lectin predominantly into the apical medium by non-classical secretion. Once within the apical extracellular milieu, galectin-3 can re-enter the cell followed by passage through endosomal organelles and modulate apical protein sorting. Here, we could show that galectin-3 is internalized by non-clathrin mediated endocytosis. Within endosomal organelles this pool associates with newly synthesized neurotrophin receptor in the biosynthetic pathway and assists in its membrane targeting. This recycling process is accompanied by transient interaction of galectin-3 with detergent insoluble membrane microdomains in a lactose- and pH-dependent manner. Moreover, in the presence of lactose, apical sorting of the neurotrophin receptor is affected following endosomal deacidification. Taken together, our results suggest that internalized galectin-3 directs the subcellular targeting of apical glycoproteins by membrane recycling.


Asunto(s)
Endocitosis/fisiología , Células Epiteliales/metabolismo , Galectina 3/metabolismo , Animales , Transporte Biológico , Caveolinas/metabolismo , Línea Celular , Membrana Celular/metabolismo , Polaridad Celular/fisiología , Clatrina/metabolismo , Perros , Endosomas/metabolismo , Glicoproteínas/metabolismo , Concentración de Iones de Hidrógeno , Lactosa/metabolismo , Células de Riñón Canino Madin Darby , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Receptores de Factor de Crecimiento Nervioso/metabolismo
14.
Biochem J ; 457(1): 107-15, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24147723

RESUMEN

Galectin-3-dependent clusters or lattices are formed at the surface as well as in distinct organelles of eukaryotic cells. Incorporation into membrane proximal networks can fix glycoproteins within subcellular domains or sort them into distinct transport pathways. In the present paper we analysed the effect of acidification on the sugar binding and self-oligomerization of galectin-3. Using a fluorescence anisotropy assay we measured decreasing galectin-3 affinities to the blood group antigen GalNAcα1-3(Fucα1-2)Galß1-4Glc under low pH conditions. Binding to the strong interaction partner N-acetyl-D-lactosamine was also lost at pH 5.0, whereas the less efficient ligand lactose was still able to bind. This indicates that variations in the binding specificity to distinct glycans can be observed by altering the pH. The formation of galectin-3-based complexes by interaction with the multivalent glycoproteins asialofetuin or transferrin was also obliterated at acidic pH and the ligand-binding affinity itself was modulated by oligomerization of the lectin. When galectin-3 was added to giant plasma membrane vesicles from the apical surface of epithelial cells, pH modulation could generate or eliminate the formation of membrane domains enriched with p75(NTR) (neurotrophin receptor p75). In conclusion, the results of the present study suggest that the formation and composition of galectin-3 networks can be fine-tuned by changes in the environmental pH.


Asunto(s)
Galectina 3/metabolismo , Complejos Multiproteicos/metabolismo , Multimerización de Proteína , Animales , Membrana Celular/metabolismo , Perros , Fetuínas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Células de Riñón Canino Madin Darby , Unión Proteica , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/metabolismo , Transferrina/metabolismo
15.
Proc Natl Acad Sci U S A ; 109(22): 8664-9, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22552227

RESUMEN

Follicular T-helper (T(FH)) cells cooperate with GL7(+)CD95(+) germinal center (GC) B cells to induce antibody maturation. Herein, we identify the transcription factor IRF4 as a T-cell intrinsic precondition for T(FH) cell differentiation and GC formation. After immunization with protein or infection with the protozoon Leishmania major, draining lymph nodes (LNs) of IFN-regulatory factor-4 (Irf4(-/-)) mice lacked GCs and GC B cells despite developing normal initial hyperplasia. GCs were also absent in Peyer's patches of naive Irf4(-/-) mice. Accordingly, CD4(+) T cells within the LNs and Peyer's patches failed to express the T(FH) key transcription factor B-cell lymphoma-6 and other T(FH)-related molecules. During chronic leishmaniasis, the draining Irf4(-/-) LNs disappeared because of massive cell death. Adoptive transfer of WT CD4(+) T cells or few L. major primed WT T(FH) cells reconstituted GC formation, GC B-cell differentiation, and LN cell survival. In support of a T-cell intrinsic IRF4 activity, Irf4(-/-) T(FH) cell differentiation was not rescued by close neighborhood to transferred WT T(FH) cells. Together with its known B lineage-specific roles during plasma cell maturation and class switch, our study places IRF4 in the center of antibody production toward T-cell-dependent antigens.


Asunto(s)
Diferenciación Celular/inmunología , Centro Germinal/inmunología , Factores Reguladores del Interferón/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Traslado Adoptivo , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/trasplante , Supervivencia Celular/inmunología , Femenino , Citometría de Flujo , Expresión Génica , Centro Germinal/citología , Centro Germinal/metabolismo , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Interleucinas/genética , Interleucinas/inmunología , Interleucinas/metabolismo , Leishmania major/inmunología , Leishmaniasis Cutánea/genética , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/parasitología , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/metabolismo , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Colaboradores-Inductores/trasplante
16.
J Cell Sci ; 125(Pt 24): 5998-6008, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23097046

RESUMEN

The role of post-translational tubulin modifications in the development and maintenance of a polarized epithelium is not well understood. We studied the balance between detyrosinated (detyr-) and tyrosinated (tyr-) tubulin in the formation of MDCK cell monolayers. Increased quantities of detyrosinated microtubules were detected during assembly into confluent cell sheets. These tubules were composed of alternating stretches of detyr- and tyr-tubulin. Constant induction of tubulin tyrosination, which decreased the levels of detyr-tubulin by overexpression of tubulin tyrosine ligase (TTL), disrupted monolayer establishment. Detyr-tubulin-depleted cells assembled into isolated islands and developed a prematurely polarized architecture. Thus, tubulin detyrosination is required for the morphological differentiation from non-polarized cells into an epithelial monolayer. Moreover, membrane trafficking, in particular to the apical domain, was slowed down in TTL-overexpressing cells. This effect could be reversed by TTL knockdown, which suggests that detyr-tubulin-enriched microtubules serve as cytoskeletal tracks to guide membrane cargo in polarized MDCK cells.


Asunto(s)
Células Epiteliales/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Animales , Diferenciación Celular , Movimiento Celular , Polaridad Celular/fisiología , Células Cultivadas , Perros , Células de Riñón Canino Madin Darby , Procesamiento Proteico-Postraduccional
17.
J Neurogenet ; 28(3-4): 302-15, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24957080

RESUMEN

Membrane fusion is essential for the communication of membrane-defined compartments, development of multicellular organisms and tissue homeostasis. Although membrane fusion has been studied extensively, still little is known about the molecular mechanisms. Especially the intercellular fusion of cells during development and tissue homeostasis is poorly understood. Somatic muscle formation in Drosophila depends on the intercellular fusion of myoblasts. In this process, myoblasts recognize each other and adhere, thereby triggering a protein machinery that leads to electron-dense plaques, vesicles and F-actin formation at apposing membranes. Two models of how local membrane stress is achieved to induce the merging of the myoblast membranes have been proposed: the electron-dense vesicles transport and release a fusogen and F-actin bends the plasma membrane. In this review, we highlight cell-adhesion molecules and intracellular proteins known to be involved in myoblast fusion. The cell-adhesion proteins also mediate the recognition and adhesion of other cell types, such as neurons that communicate with each other via special intercellular junctions, termed chemical synapses. At these synapses, neurotransmitters are released through the intracellular fusion of synaptic vesicles with the plasma membrane. As the targeting of electron-dense vesicles in myoblasts shares some similarities with the targeting of synaptic vesicle fusion, we compare molecules required for synaptic vesicle fusion to recently identified molecules involved in myoblast fusion.


Asunto(s)
Membrana Celular/metabolismo , Mioblastos/metabolismo , Sinapsis/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Drosophila/metabolismo , Exocitosis/fisiología , Vesículas Sinápticas/metabolismo
18.
Semin Immunopathol ; 46(1-2): 4, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990375

RESUMEN

In the galectin family, a group of lectins is united by their evolutionarily conserved carbohydrate recognition domains. These polypeptides play a role in various cellular processes and are implicated in disease mechanisms such as cancer, fibrosis, infection, and inflammation. Following synthesis in the cytosol, manifold interactions of galectins have been described both extracellularly and intracellularly. Extracellular galectins frequently engage with glycoproteins or glycolipids in a carbohydrate-dependent manner. Intracellularly, galectins bind to non-glycosylated proteins situated in distinct cellular compartments, each with multiple cellular functions. This diversity complicates attempts to form a comprehensive understanding of the role of galectin molecules within the cell. This review enumerates intracellular galectin interaction partners and outlines their involvement in cellular processes. The intricate connections between galectin functions and pathomechanisms are illustrated through discussions of intracellular galectin assemblies in immune and cancer cells. This underscores the imperative need to fully comprehend the interplay of galectins with the cellular machinery and to devise therapeutic strategies aimed at counteracting the establishment of galectin-based disease mechanisms.


Asunto(s)
Galectinas , Neoplasias , Humanos , Galectinas/metabolismo , Animales , Neoplasias/metabolismo , Neoplasias/etiología , Neoplasias/patología , Unión Proteica , Susceptibilidad a Enfermedades , Inflamación/metabolismo , Espacio Intracelular/metabolismo
19.
iScience ; 27(5): 109696, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38689644

RESUMEN

Popeye domain containing (POPDC) proteins are predominantly expressed in the heart and skeletal muscle, modulating the K2P potassium channel TREK-1 in a cAMP-dependent manner. POPDC1 and POPDC2 variants cause cardiac conduction disorders with or without muscular dystrophy. Searching for POPDC2-modulated ion channels using a functional co-expression screen in Xenopus oocytes, we found POPDC proteins to modulate the cardiac sodium channel Nav1.5. POPDC proteins downregulate Nav1.5 currents in a cAMP-dependent manner by reducing the surface expression of the channel. POPDC2 and Nav1.5 are both expressed in different regions of the murine heart and consistently POPDC2 co-immunoprecipitates with Nav1.5 from native cardiac tissue. Strikingly, the knock-down of popdc2 in embryonic zebrafish caused an increased upstroke velocity and overshoot of cardiac action potentials. The POPDC modulation of Nav1.5 provides a new mechanism to regulate cardiac sodium channel densities under sympathetic stimulation, which is likely to have a functional impact on cardiac physiology and inherited arrhythmias.

20.
Cell Mol Immunol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942797

RESUMEN

Recent studies reveal a critical role of tumor cell-released extracellular vesicles (EVs) in pancreatic cancer (PC) progression. However, driver genes that direct EV function, the EV-recipient cells, and their cellular response to EV uptake remain to be identified. Therefore, we studied the role of Bcl-2-associated-anthanogene 6 (BAG6), a regulator of EV biogenesis for cancer progression. We used a Cre recombinase/LoxP-based reporter system in combination with single-cell RNA sequencing to monitor in vivo EV uptake and tumor microenvironment (TME) changes in mouse models for pancreatic ductal adenocarcinoma (PDAC) in a Bag6 pro- or deficient background. In vivo data were validated using mouse and human organoids and patient samples. Our data demonstrated that Bag6-deficient subcutaneous and orthotopic PDAC tumors accelerated tumor growth dependent on EV release. Mechanistically, this was attributed to mast cell (MC) activation via EV-associated IL33. Activated MCs promoted tumor cell proliferation and altered the composition of the TME affecting fibroblast polarization and immune cell infiltration. Tumor cell proliferation and fibroblast polarization were mediated via the MC secretome containing high levels of PDGF and CD73. Patients with high BAG6 gene expression and high protein plasma level have a longer overall survival indicating clinical relevance. The current study revealed a so far unknown tumor-suppressing activity of BAG6 in PDAC. Bag6-deficiency allowed the release of EV-associated IL33 which modulate the TME via MC activation promoting aggressive tumor growth. MC depletion using imatinib diminished tumor growth providing a scientific rationale to consider imatinib for patients stratified with low BAG6 expression and high MC infiltration. EVs derived from BAG6-deficient pancreatic cancer cells induce MC activation via IL33/Il1rl1. The secretome of activated MCs induces tumor proliferation and changes in the TME, particularly shifting fibroblasts into an inflammatory cancer-associated fibroblast (iCAF) phenotype. Blocking EVs or depleting MCs restricts tumor growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA