Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Bacteriol ; 203(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33619154

RESUMEN

The two-component system BvgAS controls the virulence regulon in Bordetella pertussis BvgS is the prototype of a family of sensor histidine-kinases harboring periplasmic Venus flytrap (VFT) domains. The VFT domains are connected to the cytoplasmic kinase moiety by helical linkers separated by a Per-ARNT-Sim (PAS) domain. Antagonism between the two linkers, as one forms a coiled coil when the other is dynamic and vice versa, regulates BvgS activity. Here we solved the structure of the intervening PAS domain by X-ray crystallography. Two forms were obtained that notably differ by the connections between the PAS core domain and the flanking helical linkers. Structure-guided mutagenesis indicated that those connections participate in the regulation of BvgS activity. The PAS domain thus appears to function as a switch-facilitator module whose conformation determines the output of the system. As many BvgS homologs have similar architectures, the mechanisms unveiled here are likely to generally apply to the regulation of sensor-histidine kinases of that family.IMPORTANCEThe whooping cough agent Bordetella pertussis colonizes the human respiratory tract using virulence factors co-regulated by the sensory transduction system BvgAS. BvgS is a model for a family of sensor-kinase proteins, some of which are found in important bacterial pathogens. BvgS functions as a kinase or a phosphatase depending on external signals, which determines if B. pertussis is virulent or avirulent. Deciphering its mode of action might thus lead to new ways of fighting infections. Here we used X-ray crystallography to solve the three-dimensional structure of the domain that precedes the enzymatic moiety and identified features that regulate BvgS activity. As many sensor-kinases of the BvgS family harbor homologous domains, the mechanism unveiled here might be of general relevance.

2.
J Bacteriol ; 199(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28507245

RESUMEN

The whooping cough agent, Bordetella pertussis, controls the expression of its large virulence regulon in a coordinated manner through the two-component system BvgAS. BvgS is a dimeric, multidomain sensor kinase. Each monomer comprises, in succession, tandem periplasmic Venus flytrap (VFT) domains, a transmembrane segment, a cytoplasmic Per-Arnt-Sim (PAS) domain, a kinase module, and additional phosphorelay domains. BvgS shifts between kinase and phosphatase modes of activity in response to chemical modulators that modify the clamshell motions of the VFT domains. We have shown previously that this regulation involves a shift between distinct states of conformation and dynamics of the two-helix coiled-coil linker preceding the enzymatic module. In this work, we determined the mechanism of signal transduction across the membrane via a first linker, which connects the VFT and PAS domains of BvgS, using extensive cysteine cross-linking analyses and other approaches. Modulator perception by the periplasmic domains appears to trigger a small, symmetrical motion of the transmembrane segments toward the periplasm, causing rearrangements of the noncanonical cytoplasmic coiled coil that follows. As a consequence, the interface of the PAS domains is modified, which affects the second linker and eventually causes the shift of enzymatic activity. The major features of this first linker are well conserved among BvgS homologs, indicating that the mechanism of signal transduction unveiled here is likely to be generally relevant for this family of sensor kinases.IMPORTANCEBordetella pertussis produces virulence factors coordinately regulated by the two-component system BvgAS. BvgS is a sensor kinase, and BvgA is a response regulator that activates gene transcription when phosphorylated by BvgS. Sensor kinases homologous to BvgS are also found in other pathogens. Our goal is to decipher the mechanisms of BvgS signaling, since these sensor kinases may represent new targets for antibacterial agents. Signal perception by the sensor domains of BvgS triggers small motions of the helical linker region underneath. The protein domain that follows this linker undergoes a large conformational change that amplifies the initial signal, causing a shift of activity from kinase to phosphatase. Because BvgS homologs harbor similar regions, these signaling mechanisms are likely to apply generally to that family of sensor kinases.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Histidina Quinasa/química , Histidina Quinasa/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Transducción de Señal , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Conformación Proteica
3.
PLoS Pathog ; 11(3): e1004700, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25738876

RESUMEN

Two-component systems (TCS) represent major signal-transduction pathways for adaptation to environmental conditions, and regulate many aspects of bacterial physiology. In the whooping cough agent Bordetella pertussis, the TCS BvgAS controls the virulence regulon, and is therefore critical for pathogenicity. BvgS is a prototypical TCS sensor-kinase with tandem periplasmic Venus flytrap (VFT) domains. VFT are bi-lobed domains that typically close around specific ligands using clamshell motions. We report the X-ray structure of the periplasmic moiety of BvgS, an intricate homodimer with a novel architecture. By combining site-directed mutagenesis, functional analyses and molecular modeling, we show that the conformation of the periplasmic moiety determines the state of BvgS activity. The intertwined structure of the periplasmic portion and the different conformation and dynamics of its mobile, membrane-distal VFT1 domains, and closed, membrane-proximal VFT2 domains, exert a conformational strain onto the transmembrane helices, which sets the cytoplasmic moiety in a kinase-on state by default corresponding to the virulent phase of the bacterium. Signaling the presence of negative signals perceived by the periplasmic domains implies a shift of BvgS to a distinct state of conformation and activity, corresponding to the avirulent phase. The response to negative modulation depends on the integrity of the periplasmic dimer, indicating that the shift to the kinase-off state implies a concerted conformational transition. This work lays the bases to understand virulence regulation in Bordetella. As homologous sensor-kinases control virulence features of diverse bacterial pathogens, the BvgS structure and mechanism may pave the way for new modes of targeted therapeutic interventions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Droseraceae/metabolismo , Periplasma/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/química , Bordetella pertussis/metabolismo , Cristalografía por Rayos X , Droseraceae/química , Modelos Moleculares , Mutagénesis Sitio-Dirigida/métodos , Transducción de Señal/fisiología , Factores de Transcripción/química , Virulencia
4.
J Biol Chem ; 290(38): 23307-19, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26203186

RESUMEN

The two-component sensory transduction system BvgAS controls the virulence regulon of the whooping-cough agent Bordetella pertussis. The periplasmic moiety of the homodimeric sensor kinase BvgS is composed of four bilobed Venus flytrap (VFT) perception domains followed by α helices that extend into the cytoplasmic membrane. In the virulent phase, the default state of B. pertussis, the cytoplasmic enzymatic moiety of BvgS acts as kinase by autophosphorylating and transferring the phosphoryl group to the response regulator BvgA. Under laboratory conditions, BvgS shifts to phosphatase activity in response to modulators, notably nicotinate ions. Here we characterized the effects of nicotinate and related modulators on the BvgS periplasmic moiety by using site-directed mutagenesis and in silico and biophysical approaches. Modulators bind with low affinity to BvgS in the VFT2 cavity. Electron paramagnetic resonance shows that their binding globally affects the conformation and dynamics of the periplasmic moiety. Specific amino acid substitutions designed to slacken interactions within and between the VFT lobes prevent BvgS from responding to nicotinate, showing that BvgS shifts from kinase to phosphatase activity in response to this modulator via a tense transition state that involves a large periplasmic structural block. We propose that this transition enables the transmembrane helices to adopt a distinct conformation that sets the cytoplasmic enzymatic moiety in the phosphatase mode. The bona fide, in vivo VFT ligands that remain to be identified are likely to trigger similar effects on the transmembrane and cytoplasmic moieties. This mechanism may be relevant to the other VFT-containing sensor kinases homologous to BvgS.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bordetella pertussis/enzimología , Membrana Celular/enzimología , Niacina/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas Bacterianas/genética , Bordetella pertussis/genética , Membrana Celular/genética , Niacina/genética , Periplasma/enzimología , Periplasma/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
5.
Mol Microbiol ; 98(3): 490-501, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26192332

RESUMEN

Omp85 transporters mediate protein insertion into, or translocation across, membranes. They have a conserved architecture, with POTRA domains that interact with substrate proteins, a 16-stranded transmembrane ß barrel, and an extracellular loop, L6, folded back in the barrel pore. Here using electrophysiology, in vivo biochemical approaches and electron paramagnetic resonance, we show that the L6 loop of the Omp85 transporter FhaC changes conformation and modulates channel opening. Those conformational changes involve breaking the conserved interaction between the tip of L6 and the inner ß-barrel wall. The membrane-proximal POTRA domain also exchanges between several conformations, and the binding of FHA displaces this equilibrium. We further demonstrate a dynamic, physical communication between the POTRA domains and L6, which must take place via the ß barrel. Our findings thus link all three essential components of Omp85 transporters and indicate that they operate in a concerted fashion in the transport cycle.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Mol Microbiol ; 92(6): 1164-76, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24646315

RESUMEN

FhaC is an integral outer membrane protein of the whooping cough agent Bordetella pertussis that mediates the transport to the cell surface of a major virulence factor, the filamentous haemagglutinin adhesin FHA. The FHA/FhaC pair is a prototypic TpsA/TpsB system of the widespread 'Two-Partner Secretion' pathway, dedicated to the transport of long extracellular proteins in various pathogenic and environmental Gram-negative bacteria. FhaC belongs to the ubiquitous Omp85 superfamily of protein transporters. The X-ray structure of FhaC shows that the transmembrane ß-barrel channel hypothesized to serve as the FHA-conducting pore is obstructed by two structural elements conserved among TpsB transporters, an N-terminal α helix and an extracellular loop. Here, we provide evidence for conformational dynamics of FhaC related to the secretion mechanism. Using paramagnetic electron resonance, electrophysiology and in vivo approaches, we showed that FhaC exchanges between open and closed conformations. The interaction with its secretory partner FHA alters this distribution of conformations. The open conformation of FhaC implies a large displacement from the channel of the N-terminal 'plug' helix, which remains in the periplasm during FHA secretion. The membrane environment favours the dynamics of the TpsB transporter.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sistemas de Secreción Bacterianos , Bordetella pertussis/metabolismo , Factores de Virulencia de Bordetella/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Conformación Proteica
7.
Biophys J ; 107(1): 185-96, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24988353

RESUMEN

Probing the solution structure of membrane proteins represents a formidable challenge, particularly when using small-angle scattering. Detergent molecules often present residual scattering contributions even at their match point in small-angle neutron scattering (SANS) measurements. Here, we studied the conformation of FhaC, the outer-membrane, ß-barrel transporter of the Bordetella pertussis filamentous hemagglutinin adhesin. SANS measurements were performed on homogeneous solutions of FhaC solubilized in n-octyl-d17-ßD-glucoside and on a variant devoid of the α helix H1, which critically obstructs the FhaC pore, in two solvent conditions corresponding to the match points of the protein and the detergent, respectively. Protein-bound detergent amounted to 142 ± 10 mol/mol as determined by analytical ultracentrifugation. By using molecular modeling and starting from three distinct conformations of FhaC and its variant embedded in lipid bilayers, we generated ensembles of protein-detergent arrangement models with 120-160 detergent molecules. The scattered curves were back-calculated for each model and compared with experimental data. Good fits were obtained for relatively compact, connected detergent belts, which occasionally displayed small detergent-free patches on the outer surface of the ß barrel. The combination of SANS and modeling clearly enabled us to infer the solution structure of FhaC, with H1 inside the pore as in the crystal structure. We believe that our strategy of combining explicit atomic detergent modeling with SANS measurements has significant potential for structural studies of other detergent-solubilized membrane proteins.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Secuencia de Aminoácidos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Difracción de Neutrones , Conformación Proteica , Dispersión del Ángulo Pequeño
8.
J Biol Chem ; 287(4): 2591-9, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22134917

RESUMEN

The mechanisms of protein secretion by pathogenic bacteria remain poorly understood. In gram-negative bacteria, the two-partner secretion pathway exports large, mostly virulence-related "TpsA" proteins across the outer membrane via their dedicated "TpsB" transporters. TpsB transporters belong to the ubiquitous Omp85 superfamily, whose members are involved in protein translocation across, or integration into, cellular membranes. The filamentous hemagglutinin/FhaC pair of Bordetella pertussis is a model two-partner secretion system. We have reconstituted the TpsB transporter FhaC into proteoliposomes and demonstrate that FhaC is the sole outer membrane protein required for translocation of its cognate TpsA protein. This is the first in vitro system for analyzing protein secretion across the outer membrane of gram-negative bacteria. Our data also provide clear evidence for the protein translocation function of Omp85 transporters.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Sistemas de Secreción Bacterianos/fisiología , Bordetella pertussis/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Bordetella pertussis/genética , Proteínas Portadoras/genética , Sistema Libre de Células/metabolismo , Transporte de Proteínas/fisiología
9.
BMC Microbiol ; 13: 172, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23883404

RESUMEN

BACKGROUND: In bacteria, signal-transduction two-component systems are major players for adaptation to environmental stimuli. The perception of a chemical or physical signal by a sensor-kinase triggers its autophosphorylation. The phosphoryl group is then transferred to the cognate response regulator, which mediates the appropriate adaptive response. Virulence of the whooping cough agent Bordetella pertussis is controlled by the two-component system BvgAS. Atypically, the sensor-kinase BvgS is active without specific stimuli at 37°C in laboratory conditions and is inactivated by the addition of negative chemical modulators. The structure of BvgS is complex, with two tandem periplasmic Venus flytrap domains and a cytoplasmic PAS domain that precedes the kinase domain, which is followed by additional phosphotransfer domains. PAS domains are small, ubiquitous sensing or regulatory domains. The function of the PAS domain in BvgS remains unknown. RESULTS: We showed that recombinant BvgS PAS proteins form dimers that are stabilized by α helical regions flanking the PAS core. A structural model of the PAS domain dimer was built and probed by site-directed mutagenesis and by biochemical and functional analyses. Although we found no ligands for the PAS domain cavity, its integrity is required for signaling. We also showed that the structural stability of the PAS core and its proper coupling to its flanking N- and C-terminal α helices are crucial for BvgS activity. CONCLUSIONS: We propose that a major function of the BvgS PAS domain is to maintain conformational signals arising from mechanical strain generated by the periplasmic domain. The tight structure of the PAS core and its connections with the upstream and downstream helices ensure signaling to the kinase domain, which determines BvgS activity. Many mild substitutions that map to the PAS domain keep BvgS active but make it unresponsive to negative modulators, supporting that modulation increases conformational strain in the protein.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bordetella pertussis/fisiología , Procesamiento Proteico-Postraduccional , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bordetella pertussis/genética , Análisis Mutacional de ADN , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética
10.
Proc Natl Acad Sci U S A ; 107(40): 17351-5, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20855615

RESUMEN

Two-component sensory transduction systems control important bacterial programs. In Bordetella pertussis, expression of the virulence regulon is controlled by the unorthodox BvgAS two-component system. BvgS is the prototype of a family of sensor-kinases that harbor periplasmic domains homologous to bacterial solute-binding proteins. Although BvgAS is active under laboratory conditions, no activating signal has been identified, only negative modulators. Here we show that the second periplasmic domain of BvgS interacts with modulators and adopts a Venus flytrap (VFT) fold. X-ray crystallography reveals that the two lobes of VFT2 delimitate a ligand-binding cavity enclosing fortuitous ligands. Most substitutions of putative ligand-binding residues in the VFT2 cavity keep BvgS active, and alteration of the cavity's electrostatic potential affects responsiveness to modulation. The crystal structure of this VFT2 variant conferring constitutive kinase activity to BvgS shows a closed cavity with another nonspecific ligand. Thus, VFT2 is closed and active without a specific agonist ligand, in contrast to typical VFTs. Modulators are antagonists of VFT2 that interrupt signaling. BvgAS is active for most of the B. pertussis infectious cycle, consistent with the proposed mechanism.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bordetella pertussis/metabolismo , Periplasma/enzimología , Estructura Terciaria de Proteína , Transducción de Señal/fisiología , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Bordetella pertussis/patogenicidad , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Desnaturalización Proteica , Factores de Transcripción/genética
11.
Mol Microbiol ; 80(6): 1625-36, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21518392

RESUMEN

The chaperone/protease DegP belongs to the HtrA superfamily and is involved in protein quality control in the periplasm of Gram-negative bacteria. In Escherichia coli, typical substrates are unfolded or misfolded globular proteins that trigger the rearrangement of inactive DegP hexamers into substrate-sequestering 12- or 24-mers 'cages' for refolding or degradation. In Bordetella pertussis, DegP(Bp) facilitates, in addition, the secretion of FHA, a long ß-helical adhesin that passes through the periplasm in an extended conformation. We show that DegP(Bp) exists as soluble trimers and as a membrane-associated form. Different substrates interact differently with the distinct forms of DegP(Bp), and membrane-associated DegP(Bp) has high affinity for non-native FHA. Unlike more globular substrates, FHA does not efficiently mediate rearrangement of trimers into proteolytically active, short-lived dodecamers. In contrast to these dodecamers, membrane-associated DegP(Bp) is not committed to substrate degradation, although it is proteolytically competent. In B. pertussis, membrane-associated DegP(Bp) thus represents a specific functional form serving as a holding chaperone for client proteins including FHA. If FHA secretion is impaired, membrane-associated DegP(Bp) participates in its degradation. This form of DegP(Bp) is appropriate to handle substrates unsuitable to be sequestered in cages or non-folded, secretory proteins that must not be degraded.


Asunto(s)
Bordetella pertussis/enzimología , Membrana Celular/enzimología , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Periplasmáticas/metabolismo , Serina Endopeptidasas/metabolismo , Bordetella pertussis/química , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Especificidad por Sustrato , Factores de Virulencia de Bordetella/química , Factores de Virulencia de Bordetella/genética , Factores de Virulencia de Bordetella/metabolismo
12.
Mol Microbiol ; 81(1): 99-112, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21542859

RESUMEN

Widespread in Gram-negative bacteria, the two-partner secretion (TPS) pathway mediates the secretion of large, ß-helical 'TpsA' proteins with various functions. TpsA proteins harbour a conserved, N-proximal TPS domain essential for secretion. TpsB transporters specifically recognize their TpsA partners in the periplasm and mediate their translocation across the outer membrane through a hydrophilic channel. The FHA/FhaC pair of Bordetella pertussis represents a model TPS system. FhaC is composed of a ß barrel preceded by two periplasmic POTRA domains in tandem. Here we show that both POTRAs are involved in FHA recognition. Surface plasmon resonance analyses indicated an interaction of micromolar affinity between the POTRAs and the TPS domain with fast association and dissociation steps, consistent with the transient character of this interaction in vivo. Major interaction sites in POTRAs correspond to hydrophobic grooves formed by a ß sheet edge and the flanking α helix, well-suited to accommodate extended, amphipathic strands of the substrate and consistent with ß augmentation. The initial recruitment of the TPS domain to POTRAs appears to be facilitated by electrostatic attractions. A domain corresponding to the first part of the repeat-rich central region of FHA is also recognized by the POTRAs, suggesting successive interactions in the course of secretion.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Bordetella pertussis/metabolismo , Factores de Virulencia de Bordetella/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie
13.
mBio ; 13(4): e0091222, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35862763

RESUMEN

Copper is essential to most living beings but also highly toxic and as such is an important player at the host-pathogen interface. Bacteria have thus developed homeostatic mechanisms to tightly control its intracellular concentration. Known Cu export and import systems are under transcriptional control, whereas posttranscriptional regulatory mechanisms are yet to be characterized. We identified a three-gene operon, bp2923-bfrG-bp2921, downregulated by copper and notably encoding a TonB-dependent transporter in Bordetella pertussis. We show here that the protein encoded by the first gene, which is a member of the DUF2946 protein family, represents a new type of upstream Open Reading Frame (uORF) involved in posttranscriptional regulation of the downstream genes. In the absence of copper, the entire operon is transcribed and translated. Perception of copper by the nascent bp2923-coded protein via its conserved CXXC motif triggers Rho-dependent transcription termination between the first and second genes by relieving translation arrest on a conserved C-terminal RAPP motif. Homologs of bp2923 are widespread in bacterial genomes, where they head operons predicted to participate in copper homeostasis. This work has thus unveiled a new mode of genetic regulation by a transition metal and identified a regulatory function for a member of an uncharacterized family of bacterial proteins that we have named CruR, for copper-responsive upstream regulator. IMPORTANCE Copper is a transition metal necessary for living beings but also extremely toxic. Bacteria thus tightly control its homeostasis with transcriptional regulators. In this work, we have identified in the whooping cough agent Bordetella pertussis a new control mechanism mediated by a small protein called CruR, for copper-responsive upstream regulator. While being translated by the ribosome CruR is able to perceive intracellular copper, which shuts down the transcription of downstream genes of the same operon, coding for a copper uptake system. This mechanism limits the import of copper in conditions where it is abundant for the bacterium. This is the first report of "posttranscriptional regulation" in response to copper. Homologs of CruR genes head many operons harboring copper-related genes in various bacteria, and therefore the regulatory function unveiled here is likely a general property of this new protein family.


Asunto(s)
Cobre , Operón , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Cobre/metabolismo , Regulación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Sistemas de Lectura Abierta , Ribosomas/metabolismo
14.
Front Mol Biosci ; 9: 950871, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936790

RESUMEN

The Two-Partner secretion pathway mediates protein transport across the outer membrane of Gram-negative bacteria. TpsB transporters belong to the Omp85 superfamily, whose members catalyze protein insertion into, or translocation across membranes without external energy sources. They are composed of a transmembrane ß barrel preceded by two periplasmic POTRA domains that bind the incoming protein substrate. Here we used an integrative approach combining in vivo assays, mass spectrometry, nuclear magnetic resonance and electron paramagnetic resonance techniques suitable to detect minor states in heterogeneous populations, to explore transient conformers of the TpsB transporter FhaC. This revealed substantial, spontaneous conformational changes on a slow time scale, with parts of the POTRA2 domain approaching the lipid bilayer and the protein's surface loops. Specifically, our data indicate that an amphipathic POTRA2 ß hairpin can insert into the ß barrel. We propose that these motions enlarge the channel and initiate substrate secretion. Our data propose a solution to the conundrum how TpsB transporters mediate protein secretion without the need for cofactors, by utilizing intrinsic protein dynamics.

16.
Virulence ; 12(1): 2608-2632, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34590541

RESUMEN

The highly contagious whooping cough agent Bordetella pertussis has evolved as a human-restricted pathogen from a progenitor which also gave rise to Bordetella parapertussis and Bordetella bronchiseptica. While the latter colonizes a broad range of mammals and is able to survive in the environment, B. pertussis has lost its ability to survive outside its host through massive genome decay. Instead, it has become a highly successful human pathogen by the acquisition of tightly regulated virulence factors and evolutionary adaptation of its metabolism to its particular niche. By the deployment of an arsenal of highly sophisticated virulence factors it overcomes many of the innate immune defenses. It also interferes with vaccine-induced adaptive immunity by various mechanisms. Here, we review data from invitro, human and animal models to illustrate the mechanisms of adaptation to the human respiratory tract and provide evidence of ongoing evolutionary adaptation as a highly successful human pathogen.


Asunto(s)
Bordetella bronchiseptica , Bordetella parapertussis , Animales , Bordetella bronchiseptica/genética , Bordetella parapertussis/metabolismo , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Humanos , Mamíferos , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
17.
Commun Biol ; 4(1): 46, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420409

RESUMEN

Copper is both essential and toxic to living beings, which tightly controls its intracellular concentration. At the host-pathogen interface, copper is used by phagocytic cells to kill invading microorganisms. We investigated copper homeostasis in Bordetella pertussis, which lives in the human respiratory mucosa and has no environmental reservoir. B. pertussis has considerably streamlined copper homeostasis mechanisms relative to other Gram-negative bacteria. Its single remaining defense line consists of a metallochaperone diverted for copper passivation, CopZ, and two peroxide detoxification enzymes, PrxGrx and GorB, which together fight stresses encountered in phagocytic cells. Those proteins are encoded by an original, composite operon assembled in an environmental ancestor, which is under sensitive control by copper. This system appears to contribute to persistent infection in the nasal cavity of B. pertussis-infected mice. Combining responses to co-occurring stresses in a tailored operon reveals a strategy adopted by a host-restricted pathogen to optimize survival at minimal energy expenditure.


Asunto(s)
Bordetella pertussis/metabolismo , Cobre/metabolismo , Operón , Bordetella bronchiseptica/metabolismo , Bordetella pertussis/genética , Homeostasis , Peróxidos/metabolismo
18.
J Struct Biol ; 169(3): 253-65, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19932182

RESUMEN

Par27 from Bordetella pertussis belongs to a newly discovered class of dimeric peptidyl-prolyl isomerase (PPIase)/chaperones from the parvulin family. It is a tripartite protein with a central PPIase domain surrounded by N- and C-terminal sub-domains (NTD and CTD). Here, the Par27 structure was characterized by X-ray crystallography, small-angle X-ray scattering and template-based modeling. In the crystal lattice, Par27 consists of alternating well ordered and poorly ordered domains. The PPIase domains gave rise to diffuse scattering and could not be solved, whereas a 2.2A resolution crystal structure was obtained for the NTD and CTD, revealing a cradle-shaped dimeric platform. Despite a lack of sequence similarity with corresponding sub-domains, the topology of the peptide chain in the NTD/CTD core is similar to that of other monomeric PPIase/chaperones such as SurA and trigger factor from Escherichia coli. In Par27, dimerization occurs by sub-domain swapping. Because of the strong amino acid sequence similarity to other parvulin domains, a model for the Par27 PPIase domain was built by template-based modeling and validated against small-angle X-ray scattering (SAXS) data. A model of the full-length dimeric Par27 structure was built by rigid-body modeling and filtering against SAXS data using the partial crystal structure of the NTD/CTD core and the template-based PPIase model. The flexibility of protein was accounted for by representing the structure as an ensemble of different conformations that collectively reproduce the scattering data. The refined models exhibit a cradle-like shape reminiscent of other PPIase/chaperones, and the variability in the orientation of the PPIase domains relative to the NTD/CTD core platform observed in the different models suggests inter-domain flexibility that could be important for the biological activity of this protein.


Asunto(s)
Proteínas Bacterianas/química , Bordetella pertussis/enzimología , Isomerasa de Peptidilprolil/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Simulación de Dinámica Molecular , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
J Exp Med ; 197(6): 735-42, 2003 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-12629063

RESUMEN

Pathogen attachment is a crucial early step in mucosal infections. This step is mediated by important virulence factors called adhesins. To exert these functions, adhesins are typically surface-exposed, although, surprisingly, some are also released into the extracellular milieu, the relevance of which has previously not been studied. To address the role of adhesin release in pathogenesis, we used Bordetella pertussis as a model, since its major adhesin, filamentous hemagglutinin (FHA), partitions between the bacterial surface and the extracellular milieu. FHA release depends on its maturation by the specific B. pertussis protease SphB1. We constructed SphB1-deficient mutants and found that they were strongly affected in their ability to colonize the mouse respiratory tract, although they adhered even better to host cells in vitro than their wild-type parent strain. The defect in colonization could be overcome by prior nasal instillation of purified FHA or by coinfection with FHA-releasing B. pertussis strains, but not with SphB1-producing FHA-deficient strains, ruling out a nonspecific effect of SphB1. These results indicate that the release of FHA is important for colonization, as it may facilitate the dispersal of bacteria from microcolonies and the binding to new sites in the respiratory tract.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas , Infecciones por Bordetella/microbiología , Bordetella pertussis/patogenicidad , Hemaglutininas/metabolismo , Serina Endopeptidasas/metabolismo , Factores de Virulencia de Bordetella/metabolismo , Administración Intranasal , Animales , Adhesión Bacteriana , Bordetella pertussis/crecimiento & desarrollo , Bordetella pertussis/metabolismo , Línea Celular , Femenino , Humanos , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Toxina del Pertussis/genética , Toxina del Pertussis/metabolismo , Serina Endopeptidasas/genética , Células Tumorales Cultivadas
20.
Biol Chem ; 390(8): 675-84, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19558323

RESUMEN

Proteins of the TpsB/Omp85 superfamily are involved in protein transport across, or assembly into, the outer membrane of Gram-negative bacteria, and their distant eukaryotic relatives exert similar functions in chloroplasts and mitochondria. The X-ray structure of one TpsB transporter, FhaC, provides the bases to decipher the mechanisms of action of these proteins. With two POTRA domains in the periplasm, a transmembrane beta barrel and a large loop harboring a functionally important motif, FhaC epitomizes the conserved features of the super-family.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA