Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fungal Genet Biol ; 139: 103383, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32272219

RESUMEN

Plants comprise many asymptomatic fungal endophytes with potential roles of plant protection against abiotic and biotic stresses. Endophytes communicate with their host plant, with other endophytes and with invading pathogens but their language remains largely unknown. This work aims at understanding the chemical communication and physiological interactions between the fungal endophyte Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum. Oxylipins, common means of communication, such as 13-hydroperoxy-9,11-octadecadienoic acid (13-HPODE), had been shown in our earlier studies to be overproduced during dual culture between the two fungal antagonists. On the other hand, the mycotoxin beauvericin was reduced in the interaction zone. The present work addresses the mechanisms underlying these changes. Hydroperoxy oxylipins are produced by lipoxygenases and P. variabile contains two lipoxygenase genes (pvlox1 and pvlox2), whereas pvlox2, but not pvlox1, is specifically up regulated during the interaction and none of the F. oxysporum lox genes vary. Heterologous expression of pvlox2 in yeast shows that the corresponding enzyme PVLOX2 produces 13-HPODE and, therefore, is most likely at the origin of the overproduced 13-HPODE during the interaction. Compellingly, beauvericin synthase gene beas expression is induced and beauvericin amounts increase in F. oxysporum mycelium when in contact with P. variabile. 13-HPODE, however, does not affect beas gene expression. Beauvericin, indeed, inhibits P. variabile growth, which counteracts and biotransforms the mycotoxin leading to reduced amounts in the interaction zone which allows further expansion of the endophyte. In order to study the interaction between the protagonists in planta, we set up an in vitro tripartite interaction assay, including the model plant Arabidopsis thaliana. F. oxysporum rapidly kills A. thaliana plants, whereas P. variabile provides up to 85% reduction of plant death if present before pathogen attack. Future studies will shed light on the protection mechanisms and the role of oxylipins and beauvericin degradation herein with the long-term aim of using endophytes in plant protection.


Asunto(s)
Ascomicetos/genética , Depsipéptidos/genética , Fusarium/genética , Lipooxigenasa/genética , Ascomicetos/crecimiento & desarrollo , Endófitos/genética , Endófitos/crecimiento & desarrollo , Fusarium/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
2.
Eur J Mass Spectrom (Chichester) ; 30(1): 65-75, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38258392

RESUMEN

Tubulin-associated unit (tau) has an important role in the pathogenesis and the diagnosis of Alzheimer's disease (AD) and other tauopathies. In view of the diversity of tau proteoforms, antibody-free methods represent a good approach for unbiased quantification. We adapted and evaluated the single-pot, solid-phase-enhanced sample-preparation (SP3) protocol for antibody-free extraction of the tau protein in cerebro-spinal fluid (CSF) mimic and in human brain. A total of 13 non-modified peptides were quantified by high-resolution mass spectrometry (HRMS) after digestion of tau by trypsin. We significantly improved the basic SP3 protocol by carefully optimizing the organic solvents and incubation time for tau binding, as well as the digestion step for the release directly from the SP3 beads of the 13 tau peptides. These optimizations proved to be primarily beneficial for the most hydrophilic tau peptides, increasing the sequence coverage of recombinant tau. Mean recovery in CSF mimic of the 13 non-modified peptides was of 53%, with LODs ranging from 0.75 to 10 ng/mL. Next, we tested the optimized SP3 protocol on pathological tau extracted from the soluble fraction from an AD brain sample (middle frontal gyrus). We could successfully identify and quantify biologically relevant tau peptides including representative peptides of two isoforms and two phospho-peptides (pTau217 and pTau181).


Asunto(s)
Enfermedad de Alzheimer , Tubulina (Proteína) , Humanos , Encéfalo , Anticuerpos , Espectrometría de Masas , Péptidos
3.
Cells ; 11(8)2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35455959

RESUMEN

Neurodegenerative diseases are incurable, heterogeneous, and age-dependent disorders that challenge modern medicine. A deeper understanding of the pathogenesis underlying neurodegenerative diseases is necessary to solve the unmet need for new diagnostic biomarkers and disease-modifying therapy and reduce these diseases' burden. Specifically, post-translational modifications (PTMs) play a significant role in neurodegeneration. Due to its proximity to the brain parenchyma, cerebrospinal fluid (CSF) has long been used as an indirect way to measure changes in the brain. Mass spectrometry (MS) analysis in neurodegenerative diseases focusing on PTMs and in the context of biomarker discovery has improved and opened venues for analyzing more complex matrices such as brain tissue and blood. Notably, phosphorylated tau protein, truncated α-synuclein, APP and TDP-43, and many other modifications were extensively characterized by MS. Great potential is underlying specific pathological PTM-signatures for clinical application. This review focuses on PTM-modified proteins involved in neurodegenerative diseases and highlights the most important and recent breakthroughs in MS-based biomarker discovery.


Asunto(s)
Enfermedades Neurodegenerativas , Procesamiento Proteico-Postraduccional , Biomarcadores/metabolismo , Encéfalo/metabolismo , Humanos , Espectrometría de Masas , Enfermedades Neurodegenerativas/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA