Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(8): 100802, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38880245

RESUMEN

The ATR kinase protects cells against DNA damage and replication stress and represents a promising anti-cancer drug target. The ATR inhibitors (ATRi) berzosertib and gartisertib are both in clinical trials for the treatment of advanced solid tumors as monotherapy or in combination with genotoxic agents. We carried out quantitative phospho-proteomic screening for ATR biomarkers that are highly sensitive to berzosertib and gartisertib, using an optimized mass spectrometry pipeline. Screening identified a range of novel ATR-dependent phosphorylation events, which were grouped into three broad classes: (i) targets whose phosphorylation is highly sensitive to ATRi and which could be the next generation of ATR biomarkers; (ii) proteins with known genome maintenance roles not previously known to be regulated by ATR; (iii) novel targets whose cellular roles are unclear. Class iii targets represent candidate DNA damage response proteins and, with this in mind, proteins in this class were subjected to secondary screening for recruitment to DNA damage sites. We show that one of the proteins recruited, SCAF1, interacts with RNAPII in a phospho-dependent manner and recruitment requires PARP activity and interaction with RNAPII. We also show that SCAF1 deficiency partly rescues RAD51 loading in cells lacking the BRCA1 tumor suppressor. Taken together these data reveal potential new ATR biomarkers and new genome maintenance factors.

2.
J Biol Chem ; 288(5): 3312-21, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23255604

RESUMEN

Inositol pyrophosphates, such as diphosphoinositol pentakisphosphate (IP(7)), are water-soluble inositol phosphates that contain high energy diphosphate moieties on the inositol ring. Inositol hexakisphosphate kinase 1 (IP6K1) participates in inositol pyrophosphate synthesis, converting inositol hexakisphosphate (IP(6)) to IP(7). In the present study, we show that mouse embryonic fibroblasts (MEFs) lacking IP6K1 exhibit impaired DNA damage repair via homologous recombination (HR). IP6K1 knock-out MEFs show decreased viability and reduced recovery after induction of DNA damage by the replication stress inducer, hydroxyurea, or the radiomimetic antibiotic, neocarzinostatin. Cells lacking IP6K1 arrest after genotoxic stress, and markers associated with DNA repair are recruited to DNA damage sites, indicating that HR repair is initiated in these cells. However, repair does not proceed to completion because these markers persist as nuclear foci long after drug removal. A fraction of IP6K1-deficient MEFs continues to proliferate despite the persistence of DNA damage, rendering the cells more susceptible to chromosomal aberrations. Expression of catalytically active but not inactive IP6K1 can restore the repair process in knock-out MEFs, implying that inositol pyrophosphates are required for HR-mediated repair. Our study therefore highlights inositol pyrophosphates as novel small molecule regulators of HR signaling in mammals.


Asunto(s)
Fosfatos de Inositol/biosíntesis , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Reparación del ADN por Recombinación , Animales , Biomarcadores/metabolismo , Ciclo Celular , Supervivencia Celular , Aberraciones Cromosómicas , Roturas del ADN de Doble Cadena , Ratones , Ratones Noqueados
3.
Cell Signal ; 28(8): 1124-36, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27140681

RESUMEN

Inositol hexakisphosphate kinases (IP6Ks), a family of enzymes found in all eukaryotes, are responsible for the synthesis of 5-diphosphoinositol pentakisphosphate (5-IP7) from inositol hexakisphosphate (IP6). Three isoforms of IP6Ks are found in mammals, and gene deletions of each isoform lead to diverse, non-overlapping phenotypes in mice. Previous studies show a facilitatory role for IP6K2 in cell migration and invasion, properties that are essential for the early stages of tumorigenesis. However, IP6K2 also has an essential role in cancer cell apoptosis, and mice lacking this protein are more susceptible to the development of aerodigestive tract carcinoma upon treatment with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO). Not much is known about the functions of the equally abundant and ubiquitously expressed IP6K1 isoform in cell migration, invasion and cancer progression. We conducted a gene expression analysis on mouse embryonic fibroblasts (MEFs) lacking IP6K1, revealing a role for this protein in cell receptor-extracellular matrix interactions that regulate actin cytoskeleton dynamics. Consequently, cells lacking IP6K1 manifest defects in adhesion-dependent signaling, evident by lower FAK and Paxillin activation, leading to reduced cell spreading and migration. Expression of active, but not inactive IP6K1 reverses migration defects in IP6K1 knockout MEFs, suggesting that 5-IP7 synthesis by IP6K1 promotes cell locomotion. Actin cytoskeleton remodeling and cell migration support the ability of cancer cells to achieve their complete oncogenic potential. Cancer cells with lower IP6K1 levels display reduced migration, invasion, and anchorage-independent growth. When fed an oral carcinogen, mice lacking IP6K1 show reduced progression from epithelial dysplasia to invasive carcinoma. Thus, our data reveal that like IP6K2, IP6K1 is also involved in early cytoskeleton remodeling events during cancer progression. However, unlike IP6K2, IP6K1 is essential for 4NQO-induced invasive carcinoma. Our study therefore uncovers similarities and differences in the roles of IP6K1 and IP6K2 in cancer progression, and we propose that an isoform-specific IP6K1 inhibitor may provide a novel route to suppress carcinogenesis.


Asunto(s)
Movimiento Celular , Eliminación de Gen , Neoplasias de Cabeza y Cuello/enzimología , Neoplasias de Cabeza y Cuello/patología , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , 4-Nitroquinolina-1-Óxido , Animales , Adhesión Celular , Movimiento Celular/genética , Espacio Extracelular/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Células HCT116 , Células HEK293 , Células HeLa , Neoplasias de Cabeza y Cuello/genética , Humanos , Fosfatos de Inositol/farmacología , Ratones Noqueados , Invasividad Neoplásica , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Quinolonas , ARN Interferente Pequeño/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA