Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 160(6): 1087-98, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25768905

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a paradigmatic neurodegenerative proteinopathy, in which a mutant protein (in this case, ATAXIN1) accumulates in neurons and exerts toxicity; in SCA1, this process causes progressive deterioration of motor coordination. Seeking to understand how post-translational modification of ATAXIN1 levels influences disease, we discovered that the RNA-binding protein PUMILIO1 (PUM1) not only directly regulates ATAXIN1 but also plays an unexpectedly important role in neuronal function. Loss of Pum1 caused progressive motor dysfunction and SCA1-like neurodegeneration with motor impairment, primarily by increasing Ataxin1 levels. Breeding Pum1(+/-) mice to SCA1 mice (Atxn1(154Q/+)) exacerbated disease progression, whereas breeding them to Atxn1(+/-) mice normalized Ataxin1 levels and largely rescued the Pum1(+/-) phenotype. Thus, both increased wild-type ATAXIN1 levels and PUM1 haploinsufficiency could contribute to human neurodegeneration. These results demonstrate the importance of studying post-transcriptional regulation of disease-driving proteins to reveal factors underlying neurodegenerative disease.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/genética , Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Regiones no Traducidas 3' , Animales , Antígenos Ly/genética , Ataxina-1 , Ataxinas , Encéfalo/metabolismo , Técnicas de Sustitución del Gen , Haploinsuficiencia , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Mutación , Enfermedades Neurodegenerativas/patología , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Mensajero/química
2.
J Neurosci ; 43(10): 1658-1667, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36732074

RESUMEN

Brain pH is a critical factor for determining neuronal activity, with alkalosis increasing and acidosis reducing excitability. Acid shifts in brain pH through the breathing of carbogen (5% CO2/95% O2) reduces seizure susceptibility in animal models and patients. The molecular mechanisms underlying this seizure protection remain to be fully elucidated. Here, we demonstrate that male and female mice exposed to carbogen are fully protected from thermogenic-triggered seizures. Whole-cell patch-clamp recordings revealed that acid shifts in extracellular pH (pHo) significantly reduce action potential firing in CA1 pyramidal neurons but did not alter firing in hippocampal inhibitory interneurons. In real-time dynamic clamp experiments, acidification reduced simulated action potential firing generated in hybrid model neurons expressing the excitatory neuron predominant NaV1.2 channel. Conversely, acidification had no effect on action potential firing in hybrid model neurons expressing the interneuron predominant NaV1.1 channel. Furthermore, knockdown of Scn2a mRNA in vivo using antisense oligonucleotides reduced the protective effects of carbogen on seizure susceptibility. Both carbogen-mediated seizure protection and the reduction in CA1 pyramidal neuron action potential firing by low pHo were maintained in an Asic1a knock-out mouse ruling out this acid-sensing channel as the underlying molecular target. These data indicate that the acid-mediated reduction in excitatory neuron firing is mediated, at least in part, through the inhibition of NaV1.2 channels, whereas inhibitory neuron firing is unaffected. This reduction in pyramidal neuron excitability is the likely basis of seizure suppression caused by carbogen-mediated acidification.SIGNIFICANCE STATEMENT Brain pH has long been known to modulate neuronal excitability. Here, we confirm that brain acidification reduces seizure susceptibility in a mouse model of thermogenic seizures. Extracellular acidification reduced excitatory pyramidal neuron firing while having no effect on interneuron firing. Acidification also reduced dynamic clamp firing in cells expressing the NaV1.2 channel but not in cells expressing NaV1.1 channels. In vivo knockdown of Scn2a mRNA reduced seizure protection of acidification. In contrast, acid-mediated seizure protection was maintained in the Asic1a knock-out mouse. These data suggest NaV1.2 channel as an important target for acid-mediated seizure protection. Our results have implications on how natural variations in pH can modulate neuronal excitability and highlight potential antiseizure drug development strategies based on the NaV1.2 channel.


Asunto(s)
Acidosis Respiratoria , Segmento Inicial del Axón , Ratones , Masculino , Animales , Femenino , Dióxido de Carbono , Convulsiones/inducido químicamente , Convulsiones/genética , Células Piramidales , Potenciales de Acción , Ratones Noqueados , ARN Mensajero
3.
J Biol Chem ; 299(12): 105475, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37981208

RESUMEN

Heterozygous GRN (progranulin) mutations cause frontotemporal dementia (FTD) due to haploinsufficiency, and increasing progranulin levels is a major therapeutic goal. Several microRNAs, including miR-29b, negatively regulate progranulin protein levels. Antisense oligonucleotides (ASOs) are emerging as a promising therapeutic modality for neurological diseases, but strategies for increasing target protein levels are limited. Here, we tested the efficacy of ASOs as enhancers of progranulin expression by sterically blocking the miR-29b binding site in the 3' UTR of the human GRN mRNA. We found 16 ASOs that increase progranulin protein in a dose-dependent manner in neuroglioma cells. A subset of these ASOs also increased progranulin protein in iPSC-derived neurons and in a humanized GRN mouse model. In FRET-based assays, the ASOs effectively competed for miR-29b from binding to the GRN 3' UTR RNA. The ASOs increased levels of newly synthesized progranulin protein by increasing its translation, as revealed by polysome profiling. Together, our results demonstrate that ASOs can be used to effectively increase target protein levels by partially blocking miR binding sites. This ASO strategy may be therapeutically feasible for progranulin-deficient FTD as well as other conditions of haploinsufficiency.


Asunto(s)
Demencia Frontotemporal , MicroARNs , Oligonucleótidos Antisentido , Progranulinas , Animales , Humanos , Ratones , Regiones no Traducidas 3' , Sitios de Unión , Demencia Frontotemporal/genética , Péptidos y Proteínas de Señalización Intercelular/genética , MicroARNs/genética , Mutación , Oligonucleótidos Antisentido/genética , Progranulinas/genética , ARN Mensajero/genética
4.
Hepatology ; 78(5): 1337-1351, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37021797

RESUMEN

BACKGROUND AND AIMS: Paucity of intrahepatic bile ducts (BDs) is caused by various etiologies and often leads to cholestatic liver disease. For example, in patients with Alagille syndrome (ALGS), which is a genetic disease primarily caused by mutations in jagged 1 ( JAG1) , BD paucity often results in severe cholestasis and liver damage. However, no mechanism-based therapy exists to restore the biliary system in ALGS or other diseases associated with BD paucity. Based on previous genetic observations, we investigated whether postnatal knockdown of the glycosyltransferase gene protein O -glucosyltransferase 1 ( Poglut1) can improve the ALGS liver phenotypes in several mouse models generated by removing one copy of Jag1 in the germline with or without reducing the gene dosage of sex-determining region Y-box 9 in the liver. APPROACH AND RESULTS: Using an ASO established in this study, we show that reducing Poglut1 levels in postnatal livers of ALGS mouse models with moderate to profound biliary abnormalities can significantly improve BD development and biliary tree formation. Importantly, ASO injections prevent liver damage in these models without adverse effects. Furthermore, ASO-mediated Poglut1 knockdown improves biliary tree formation in a different mouse model with no Jag1 mutations. Cell-based signaling assays indicate that reducing POGLUT1 levels or mutating POGLUT1 modification sites on JAG1 increases JAG1 protein level and JAG1-mediated signaling, suggesting a likely mechanism for the observed in vivo rescue. CONCLUSIONS: Our preclinical studies establish ASO-mediated POGLUT1 knockdown as a potential therapeutic strategy for ALGS liver disease and possibly other diseases associated with BD paucity.


Asunto(s)
Síndrome de Alagille , Glicosiltransferasas , Hígado , Oligonucleótidos Antisentido , Animales , Ratones , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Síndrome de Alagille/patología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Proteínas de Unión al Calcio/genética , Colestasis/genética , Colestasis/metabolismo , Silenciador del Gen , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Hígado/metabolismo , Hígado/patología , Proteínas de la Membrana/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Fenotipo , Proteínas Serrate-Jagged/genética , Proteínas Serrate-Jagged/metabolismo
5.
Mol Psychiatry ; 28(6): 2445-2461, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37012334

RESUMEN

TAR DNA binding protein 43 (TDP-43) pathology is a key feature of over 95% of amyotrophic lateral sclerosis (ALS) and nearly half of frontotemporal dementia (FTD) cases. The pathogenic mechanisms of TDP-43 dysfunction are poorly understood, however, activation of cell stress pathways may contribute to pathogenesis. We, therefore, sought to identify which cell stress components are critical for driving disease onset and neurodegeneration in ALS and FTD. We studied the rNLS8 transgenic mouse model, which expresses human TDP-43 with a genetically-ablated nuclear localisation sequence within neurons of the brain and spinal cord resulting in cytoplasmic TDP-43 pathology and progressive motor dysfunction. Amongst numerous cell stress-related biological pathways profiled using qPCR arrays, several critical integrated stress response (ISR) effectors, including CCAAT/enhancer-binding homologous protein (Chop/Ddit3) and activating transcription factor 4 (Atf4), were upregulated in the cortex of rNLS8 mice prior to disease onset. This was accompanied by early up-regulation of anti-apoptotic gene Bcl2 and diverse pro-apoptotic genes including BH3-interacting domain death agonist (Bid). However, pro-apoptotic signalling predominated after onset of motor phenotypes. Notably, pro-apoptotic cleaved caspase-3 protein was elevated in the cortex of rNLS8 mice at later disease stages, suggesting that downstream activation of apoptosis drives neurodegeneration following failure of early protective responses. Unexpectedly, suppression of Chop in the brain and spinal cord using antisense oligonucleotide-mediated silencing had no effect on overall TDP-43 pathology or disease phenotypes in rNLS8 mice. Cytoplasmic TDP-43 accumulation therefore causes very early activation of ISR and both anti- and pro-apoptotic signalling that switches to predominant pro-apoptotic activation later in disease. These findings suggest that precise temporal modulation of cell stress and death pathways may be beneficial to protect against neurodegeneration in ALS and FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Ratones , Animales , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ratones Transgénicos
6.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34187891

RESUMEN

Heterozygous genetic variants within the TREM2 gene show a strong association with increased Alzheimer's disease (AD) risk. Amyloid beta-depositing mouse models haploinsufficient or null for Trem2 have identified important relationships among TREM2, microglia, and AD pathology; however, results are challenging to interpret in the context of varying microglial phenotypes and disease progression. We hypothesized that acute Trem2 reduction may alter amyloid pathology and microglial responses independent of genetic Trem2 deletion in mouse models. We developed antisense oligonucleotides (ASOs) that potently but transiently lower Trem2 messenger RNA throughout the brain and administered them to APP/PS1 mice at varying stages of plaque pathology. Late-stage ASO-mediated Trem2 knockdown significantly reduced plaque deposition and attenuated microglial association around plaque deposits when evaluated 1 mo after ASO injection. Changes in microglial gene signatures 1 wk after ASO administration and phagocytosis measured in ASO-treated cells together indicate that microglia may be activated with short-term Trem2 reduction. These results suggest a time- and/or dose-dependent role for TREM2 in mediating plaque deposition and microglial responses in which loss of TREM2 function may be beneficial for microglial activation and plaque removal in an acute context.


Asunto(s)
Amiloide/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglía/patología , Fagocitosis , Receptores Inmunológicos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Microglía/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , Fagocitosis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Placa Amiloide/patología , Presenilina-1/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Proteínas tau/metabolismo
7.
BMC Biol ; 21(1): 240, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907898

RESUMEN

BACKGROUND: PFTK1/Eip63E is a member of the cyclin-dependent kinases (CDKs) family and plays an important role in normal cell cycle progression. Eip63E expresses primarily in postnatal and adult nervous system in Drosophila melanogaster but its role in CNS development remains unknown. We sought to understand the function of Eip63E in the CNS by studying the fly ventral nerve cord during development. RESULTS: Our results demonstrate that Eip63E regulates axogenesis in neurons and its deficiency leads to neuronal defects. Functional interaction studies performed using the same system identify an interaction between Eip63E and the small GTPase Rho1. Furthermore, deficiency of Eip63E homolog in mice, PFTK1, in a newly generated PFTK1 knockout mice results in increased axonal outgrowth confirming that the developmental defects observed in the fly model are due to defects in axogenesis. Importantly, RhoA phosphorylation and activity are affected by PFTK1 in primary neuronal cultures. We report that GDP-bound inactive RhoA is a substrate of PFTK1 and PFTK1 phosphorylation is required for RhoA activity. CONCLUSIONS: In conclusion, our work establishes an unreported neuronal role of PFTK1 in axon development mediated by phosphorylation and activation of GDP-bound RhoA. The results presented add to our understanding of the role of Cdks in the maintenance of RhoA-mediated axon growth and its impact on CNS development and axonal regeneration.


Asunto(s)
Quinasas Ciclina-Dependientes , Drosophila melanogaster , Animales , Ratones , Ciclo Celular , Quinasas Ciclina-Dependientes/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neuronas/metabolismo , Fosforilación , Proteína de Unión al GTP rhoA/metabolismo
8.
Acta Neuropathol ; 147(1): 1, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019311

RESUMEN

The G4C2 repeat expansion in the C9orf72 gene is the most common genetic cause of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Many studies suggest that dipeptide repeat proteins produced from this repeat are toxic, yet, the contribution of repeat RNA toxicity is under investigated and even less is known regarding the pathogenicity of antisense repeat RNA. Recently, two clinical trials targeting G4C2 (sense) repeat RNA via antisense oligonucleotide failed despite a robust decrease in sense-encoded dipeptide repeat proteins demonstrating target engagement. Here, in this brief report, we show that G2C4 antisense, but not G4C2 sense, repeat RNA is sufficient to induce TDP-43 dysfunction in induced pluripotent stem cell (iPSC) derived neurons (iPSNs). Unexpectedly, only G2C4, but not G4C2 sense strand targeting, ASOs mitigate deficits in TDP-43 function in authentic C9orf72 ALS/FTD patient iPSNs. Collectively, our data suggest that the G2C4 antisense repeat RNA may be an important therapeutic target and provide insights into a possible explanation for the recent G4C2 ASO clinical trial failure.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Células Madre Pluripotentes Inducidas , Humanos , Oligonucleótidos Antisentido/farmacología , Demencia Frontotemporal/genética , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proteínas de Unión al ADN/genética , ARN sin Sentido , Dipéptidos , Neuronas
9.
Nature ; 544(7650): 367-371, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28405022

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease that is characterized by motor neuron loss and that leads to paralysis and death 2-5 years after disease onset. Nearly all patients with ALS have aggregates of the RNA-binding protein TDP-43 in their brains and spinal cords, and rare mutations in the gene encoding TDP-43 can cause ALS. There are no effective TDP-43-directed therapies for ALS or related TDP-43 proteinopathies, such as frontotemporal dementia. Antisense oligonucleotides (ASOs) and RNA-interference approaches are emerging as attractive therapeutic strategies in neurological diseases. Indeed, treatment of a rat model of inherited ALS (caused by a mutation in Sod1) with ASOs against Sod1 has been shown to substantially slow disease progression. However, as SOD1 mutations account for only around 2-5% of ALS cases, additional therapeutic strategies are needed. Silencing TDP-43 itself is probably not appropriate, given its critical cellular functions. Here we present a promising alternative therapeutic strategy for ALS that involves targeting ataxin-2. A decrease in ataxin-2 suppresses TDP-43 toxicity in yeast and flies, and intermediate-length polyglutamine expansions in the ataxin-2 gene increase risk of ALS. We used two independent approaches to test whether decreasing ataxin-2 levels could mitigate disease in a mouse model of TDP-43 proteinopathy. First, we crossed ataxin-2 knockout mice with TDP-43 (also known as TARDBP) transgenic mice. The decrease in ataxin-2 reduced aggregation of TDP-43, markedly increased survival and improved motor function. Second, in a more therapeutically applicable approach, we administered ASOs targeting ataxin-2 to the central nervous system of TDP-43 transgenic mice. This single treatment markedly extended survival. Because TDP-43 aggregation is a component of nearly all cases of ALS, targeting ataxin-2 could represent a broadly effective therapeutic strategy.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Ataxina-2/deficiencia , Proteínas de Unión al ADN/metabolismo , Longevidad , Oligonucleótidos Antisentido/uso terapéutico , Agregación Patológica de Proteínas/terapia , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Ataxina-2/genética , Sistema Nervioso Central/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Destreza Motora/fisiología , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Agregación Patológica de Proteínas/genética , Estrés Fisiológico , Análisis de Supervivencia
10.
Nucleic Acids Res ; 49(2): 657-673, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33367834

RESUMEN

Antisense oligonucleotides (ASOs) have emerged as a new class of drugs to treat a wide range of diseases, including neurological indications. Spinraza, an ASO that modulates splicing of SMN2 RNA, has shown profound disease modifying effects in Spinal Muscular Atrophy (SMA) patients, energizing efforts to develop ASOs for other neurological diseases. While SMA specifically affects spinal motor neurons, other neurological diseases affect different central nervous system (CNS) regions, neuronal and non-neuronal cells. Therefore, it is important to characterize ASO distribution and activity in all major CNS structures and cell types to have a better understanding of which neurological diseases are amenable to ASO therapy. Here we present for the first time the atlas of ASO distribution and activity in the CNS of mice, rats, and non-human primates (NHP), species commonly used in preclinical therapeutic development. Following central administration of an ASO to rodents, we observe widespread distribution and target RNA reduction throughout the CNS in neurons, oligodendrocytes, astrocytes and microglia. This is also the case in NHP, despite a larger CNS volume and more complex neuroarchitecture. Our results demonstrate that ASO drugs are well suited for treating a wide range of neurological diseases for which no effective treatments are available.


Asunto(s)
Sistema Nervioso Central/química , Ratones/metabolismo , Oligonucleótidos Antisentido/farmacocinética , Primates/metabolismo , Ratas/metabolismo , Animales , Sistema Nervioso Central/citología , Femenino , Hibridación in Situ , Inyecciones Intraventriculares , Inyecciones Espinales , Macaca fascicularis , Masculino , Neuroglía/química , Neuronas/química , Oligonucleótidos Antisentido/administración & dosificación , Especificidad de Órganos , ARN Largo no Codificante/análisis , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , Ratas Sprague-Dawley , Ribonucleasa H , Distribución Tisular
11.
Epilepsia ; 63(10): e125-e131, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35892317

RESUMEN

Voltage-gated sodium and potassium channels regulate the initiation and termination of neuronal action potentials. Gain-of-function mutations of sodium channel Scn8a and loss-of-function mutations of potassium channels Kcna1 and Kcnq2 increase neuronal activity and lead to seizure disorders. We tested the hypothesis that reducing the expression of Scn8a would compensate for loss-of-function mutations of Kcna1 or Kcnq2. Scn8a expression was reduced by the administration of an antisense oligonucleotide (ASO). This treatment lengthened the survival of the Kcn1a and Kcnq2 mutants, and reduced the seizure frequency in the Kcnq2 mutant mice. These observations suggest that reduction of SCN8A may be therapeutic for genetic epilepsies resulting from mutations in these potassium channel genes.


Asunto(s)
Epilepsia , Canal de Potasio KCNQ2 , Canal de Potasio Kv.1.1 , Canal de Sodio Activado por Voltaje NAV1.6 , Proteínas del Tejido Nervioso , Animales , Epilepsia/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio Kv.1.1/genética , Ratones , Mutación , Canal de Sodio Activado por Voltaje NAV1.6/genética , Proteínas del Tejido Nervioso/genética , Oligonucleótidos Antisentido
12.
Ann Neurol ; 87(3): 339-346, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31943325

RESUMEN

OBJECTIVE: SCN8A encephalopathy is a developmental and epileptic encephalopathy (DEE) caused by de novo gain-of-function mutations of sodium channel Nav 1.6 that result in neuronal hyperactivity. Affected individuals exhibit early onset drug-resistant seizures, developmental delay, and cognitive impairment. This study was carried out to determine whether reducing the abundance of the Scn8a transcript with an antisense oligonucleotide (ASO) would delay seizure onset and prolong survival in a mouse model of SCN8A encephalopathy. METHODS: ASO treatment was tested in a conditional mouse model with Cre-dependent expression of the pathogenic patient SCN8A mutation p.Arg1872Trp (R1872W). This model exhibits early onset of seizures, rapid progression, and 100% penetrance. An Scn1a +/- haploinsufficient mouse model of Dravet syndrome was also treated. ASO was administered by intracerebroventricular injection at postnatal day 2, followed in some cases by stereotactic injection at postnatal day 30. RESULTS: We observed a dose-dependent increase in length of survival from 15 to 65 days in the Scn8a-R1872W/+ mice treated with ASO. Electroencephalographic recordings were normal prior to seizure onset. Weight gain and activity in an open field were unaffected, but treated mice were less active in a wheel running assay. A single treatment with Scn8a ASO extended survival of Dravet syndrome mice from 3 weeks to >5 months. INTERPRETATION: Reduction of Scn8a transcript by 25 to 50% delayed seizure onset and lethality in mouse models of SCN8A encephalopathy and Dravet syndrome. Reduction of SCN8A transcript is a promising approach to treatment of intractable childhood epilepsies. Ann Neurol 2020;87:339-346.


Asunto(s)
Encefalopatías/prevención & control , Epilepsias Mioclónicas/prevención & control , Canal de Sodio Activado por Voltaje NAV1.6/efectos de los fármacos , Animales , Encefalopatías/complicaciones , Encefalopatías/mortalidad , Relación Dosis-Respuesta a Droga , Epilepsias Mioclónicas/complicaciones , Epilepsias Mioclónicas/mortalidad , Femenino , Infusiones Intraventriculares , Masculino , Ratones , Ratones Transgénicos , Mutación , Canal de Sodio Activado por Voltaje NAV1.6/administración & dosificación , Oligonucleótidos Antisentido/farmacología , Convulsiones/complicaciones , Convulsiones/prevención & control
13.
Neurobiol Dis ; 124: 133-140, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30458231

RESUMEN

Therapeutic strategies are needed for the treatment of amyotrophic lateral sclerosis (ALS). One potential target is matrix metalloproteinase-9 (MMP-9), which is expressed only by fast motor neurons (MNs) that are selectively vulnerable to various ALS-relevant triggers. Previous studies have shown that reduction of MMP-9 function delayed motor dysfunction in a mouse model of familial ALS. However, given that the majority of ALS cases are sporadic, we propose preclinical testing in a mouse model which may be more clinically translatable: rNLS8 mice. In rNLS8 mice, neurodegeneration is triggered by the major pathological hallmark of ALS, TDP-43 mislocalization and aggregation. MMP-9 was targeted in 3 different ways in rNLS8 mice: by AAV9-mediated knockdown, using antisense oligonucleotide (ASO) technology, and by genetic modification. All 3 strategies preserved the motor unit during disease, as measured by MN counts, tibialis anterior (TA) muscle innervation, and physiological recordings from muscle. However, the strategies that reduced MMP-9 beyond the motor unit lead to premature deaths in a subset of rNLS8 mice. Therefore, selective targeting of MMP-9 in MNs could be beneficial in ALS, but side effects outside of the motor circuit may limit the most commonly used clinical targeting strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/inervación , Músculo Esquelético/fisiopatología
14.
Brain ; 141(12): 3428-3442, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496365

RESUMEN

Mutations in the endosome-associated protein CHMP2B cause frontotemporal dementia and lead to lysosomal storage pathology in neurons. We here report that physiological levels of mutant CHMP2B causes reduced numbers and significantly impaired trafficking of endolysosomes within neuronal dendrites, accompanied by increased dendritic branching. Mechanistically, this is due to the stable incorporation of mutant CHMP2B onto neuronal endolysosomes, which we show renders them unable to traffic within dendrites. This defect is due to the inability of mutant CHMP2B to recruit the ATPase VPS4, which is required for release of CHMP2B from endosomal membranes. Strikingly, both impaired trafficking and the increased dendritic branching were rescued by treatment with antisense oligonucleotides targeting the well validated frontotemporal dementia risk factor TMEM106B, which encodes an endolysosomal protein. This indicates that reducing TMEM106B levels can restore endosomal health in frontotemporal dementia. As TMEM106B is a risk factor for frontotemporal dementia caused by both C9orf72 and progranulin mutations, and antisense oligonucleotides are showing promise as therapeutics for neurodegenerative diseases, our data suggests a potential new strategy for treating the wide range of frontotemporal dementias associated with endolysosomal dysfunction.


Asunto(s)
Dendritas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Demencia Frontotemporal/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/metabolismo , Animales , Encéfalo/metabolismo , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal
15.
Nature ; 498(7454): 325-331, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23719381

RESUMEN

Many neurodegenerative disorders, such as Alzheimer's, Parkinson's and polyglutamine diseases, share a common pathogenic mechanism: the abnormal accumulation of disease-causing proteins, due to either the mutant protein's resistance to degradation or overexpression of the wild-type protein. We have developed a strategy to identify therapeutic entry points for such neurodegenerative disorders by screening for genetic networks that influence the levels of disease-driving proteins. We applied this approach, which integrates parallel cell-based and Drosophila genetic screens, to spinocerebellar ataxia type 1 (SCA1), a disease caused by expansion of a polyglutamine tract in ataxin 1 (ATXN1). Our approach revealed that downregulation of several components of the RAS-MAPK-MSK1 pathway decreases ATXN1 levels and suppresses neurodegeneration in Drosophila and mice. Importantly, pharmacological inhibitors of components of this pathway also decrease ATXN1 levels, suggesting that these components represent new therapeutic targets in mitigating SCA1. Collectively, these data reveal new therapeutic entry points for SCA1 and provide a proof-of-principle for tackling other classes of intractable neurodegenerative diseases.


Asunto(s)
Drosophila melanogaster/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/toxicidad , Proteínas Nucleares/metabolismo , Proteínas Nucleares/toxicidad , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Proteínas ras/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Ataxina-1 , Ataxinas , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Drosophila melanogaster/genética , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Datos de Secuencia Molecular , Terapia Molecular Dirigida , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Estabilidad Proteica/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transgenes
16.
Nat Genet ; 39(3): 373-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17322884

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a glutamine tract in ataxin-1 (ATXN1). SCA1 pathogenesis studies support a model in which the expanded glutamine tract causes toxicity by modulating the normal activities of ATXN1. To explore native interactions that modify the toxicity of ATXN1, we generated a targeted duplication of the mouse ataxin-1-like (Atxn1l, also known as Boat) locus, a highly conserved paralog of SCA1, and tested the role of this protein in SCA1 pathology. Using a knock-in mouse model of SCA1 that recapitulates the selective neurodegeneration seen in affected individuals, we found that elevated Atxn1l levels suppress neuropathology by displacing mutant Atxn1 from its native complex with Capicua (CIC). Our results provide genetic evidence that the selective neuropathology of SCA1 arises from modulation of a core functional activity of ATXN1, and they underscore the importance of studying the paralogs of genes mutated in neurodegenerative diseases to gain insight into mechanisms of pathogenesis.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Ataxias Espinocerebelosas/genética , Animales , Ataxina-1 , Ataxinas , Células Cultivadas , Cerebelo/metabolismo , Expansión de las Repeticiones de ADN , Células Madre Embrionarias/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Modelos Genéticos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/análisis , Células de Purkinje/metabolismo , Proteínas Represoras/metabolismo , Ataxias Espinocerebelosas/patología
17.
Nature ; 452(7188): 713-8, 2008 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-18337722

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a glutamine-encoding repeat in ataxin 1 (ATXN1). In all known polyglutamine diseases, the glutamine expansion confers toxic functions onto the protein; however, the mechanism by which this occurs remains enigmatic, in light of the fact that the mutant protein apparently maintains interactions with its usual partners. Here we show that the expanded polyglutamine tract differentially affects the function of the host protein in the context of different endogenous protein complexes. Polyglutamine expansion in ATXN1 favours the formation of a particular protein complex containing RBM17, contributing to SCA1 neuropathology by means of a gain-of-function mechanism. Concomitantly, polyglutamine expansion attenuates the formation and function of another protein complex containing ATXN1 and capicua, contributing to SCA1 through a partial loss-of-function mechanism. This model provides mechanistic insight into the molecular pathogenesis of SCA1 as well as other polyglutamine diseases.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Ataxias Espinocerebelosas/metabolismo , Expansión de Repetición de Trinucleótido , Alelos , Animales , Ataxina-1 , Ataxinas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Sistemas de Lectura Abierta/genética , Péptidos/genética , Unión Proteica , Estructura Cuaternaria de Proteína , Células de Purkinje/citología , Células de Purkinje/metabolismo , Factores de Empalme de ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Expansión de Repetición de Trinucleótido/genética , Técnicas del Sistema de Dos Híbridos
18.
Proc Natl Acad Sci U S A ; 108(5): 2142-7, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21245341

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by the expansion of a CAG repeat encoding a polyglutamine tract in Ataxin-1 (ATXN1). Both WT and mutant ATXN1 interact with 14-3-3 proteins, and 14-3-3 overexpression stabilizes ATXN1 levels in cells and increases ATXN1 toxicity in flies. To determine whether reducing 14-3-3 levels might mitigate SCA1 pathogenesis, we bred Sca1(154Q/+) mice to mice lacking one allele of 14-3-3ε. 14-3-3ε haploinsufficiency rescued cerebellar pathology and motor phenotypes but, surprisingly, not weight loss, respiratory dysfunction, or premature lethality. Biochemical studies revealed that reducing 14-3-3ε levels exerted different effects in two brain regions especially vulnerable in SCA1: Although diminishing levels of both WT and mutant ATXN1 in the cerebellum, 14-3-3ε haploinsufficiency did not alter ATXN1 levels in the brainstem. Furthermore, 14-3-3ε haploinsufficiency decreased the incorporation of expanded ATXN1 into its large toxic complexes in the cerebellum but not in the brainstem, and the distribution of ATXN1's small and large native complexes differed significantly between the two regions. These data suggest that distinct pathogenic mechanisms operate in different vulnerable brain regions, adding another level of complexity to SCA1 pathogenesis.


Asunto(s)
Proteínas 14-3-3/genética , Haploinsuficiencia , Ataxias Espinocerebelosas/genética , Alelos , Animales , Ataxina-1 , Ataxinas , Encéfalo/patología , Línea Celular , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fenotipo
19.
bioRxiv ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38464319

RESUMEN

Pompe disease (PD) is a progressive myopathy caused by the aberrant accumulation of glycogen in skeletal and cardiac muscle resulting from the deficiency of the enzyme acid alpha-glucosidase (GAA). Administration of recombinant human GAA as enzyme replacement therapy (ERT) works well in alleviating the cardiac manifestations of PD but loses sustained benefit in ameliorating the skeletal muscle pathology. The limited efficacy of ERT in skeletal muscle is partially attributable to its inability to curb the accumulation of new glycogen produced by the muscle enzyme glycogen synthase 1 (GYS1). Substrate reduction therapies aimed at knocking down GYS1 expression represent a promising avenue to improve Pompe myopathy. However, finding specific inhibitors for GYS1 is challenging given the presence of the highly homologous GYS2 in the liver. Antisense oligonucleotides (ASOs) are chemically modified oligomers that hybridize to their complementary target RNA to induce their degradation with exquisite specificity. In the present study, we show that ASO-mediated Gys1 knockdown in the Gaa -/- mouse model of PD led to a robust reduction in glycogen accumulation in skeletal and cardiac muscle. In addition, combining Gys1 ASO with ERT further reduced glycogen content in muscle, eliminated autophagic buildup and lysosomal dysfunction, and improved motor function in Gaa -/- mice. Our results provide a strong foundation for further validation of the use of Gys1 ASO, alone or in combination with ERT, as a therapy for PD. We propose that early administration of Gys1 ASO in combination with ERT may be the key to preventative treatment options in PD.

20.
Stem Cell Res ; 74: 103292, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38154383

RESUMEN

MECP2 Duplication Syndrome (MDS) is a rare, severe neurodevelopmental disorder arising from duplications in the Xq28 region containing the MECP2 gene that predominantly affects males. We generated five human induced pluripotent stem cell (iPSC) lines from the fibroblasts of individuals carrying between 0.355 and 11.2 Mb size duplications in the chromosomal locus containing MECP2. All lines underwent extensive testing to confirm MECP2 duplication and iPSC-related features such as morphology, pluripotency markers, and trilineage differentiation potential. These lines are a valuable resource for molecular and functional studies of MDS as well as screening for a variety of therapeutic approaches.


Asunto(s)
Células Madre Pluripotentes Inducidas , Discapacidad Intelectual Ligada al Cromosoma X , Proteína 2 de Unión a Metil-CpG , Humanos , Masculino , Diferenciación Celular , Duplicación de Gen , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína 2 de Unión a Metil-CpG/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA