Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(29): e2203074119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858303

RESUMEN

Adhesives typically fall into two categories: those that have high but irreversible adhesion strength due to the formation of covalent bonds at the interface and are slow to deploy, and others that are fast to deploy and the adhesion is reversible but weak in strength due to formation of noncovalent bonds. Synergizing the advantages from both categories remains challenging but pivotal for the development of the next generation of wound dressing adhesives. Here, we report a fast and reversible adhesive consisting of dynamic boronic ester covalent bonds, formed between poly(vinyl alcohol) (PVA) and boric acid (BA) for potential use as a wound dressing adhesive. Mechanical testing shows that the adhesive film has strength in shear of 61 N/cm2 and transcutaneous adhesive strength of 511 N/cm2, generated within 2 min of application. Yet the film can be effortlessly debonded when exposed to excess water. The mechanical properties of PVA/BA adhesives are tunable by varying the cross-linking density. Within seconds of activation by water, the surface boronic ester bonds in the PVA/BA film undergo fast debonding and instant softening, leading to conformal contact with the adherends and reformation of the boronic ester bonds at the interface. Meanwhile, the bulk film remains dehydrated to offer efficient load transmission, which is important to achieve strong adhesion without delamination at the interface. Whether the substrate surface is smooth (e.g., glass) or rough (e.g., hairy mouse skin), PVA/BA adhesives demonstrate superior adhesion compared to the most widely used topical skin adhesive in clinical medicine, Dermabond.


Asunto(s)
Adhesivos , Vendas Hidrocoloidales , Cicatrización de Heridas , Adhesivos/química , Animales , Ésteres , Hidrogeles/química , Ratones , Alcohol Polivinílico/química , Agua/química
2.
Soft Matter ; 20(7): 1447-1458, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38259171

RESUMEN

Biology is replete with examples, at length scales ranging from the molecular (ligand-receptor binding) to the mesoscopic scale (wing arresting structures on dragonflies) where shape-complementary surfaces are used to control interfacial mechanical properties such as adhesion, friction, and contact compliance. Related bio-inspired and biomimetic structures have been used to achieve unique interfacial properties such as friction and adhesion enhancement, directional and switchable properties. The ability to tune friction by altering surface structures offers advantages in various fields, such as soft robotics and tire manufacturing. Here, we present a study of friction between polydimethylsiloxane (PDMS) samples with surfaces patterned with pillar-arrays. When brought in contact with each other the two samples spontaneously produce a Moiré pattern that can also be represented as an array of interfacial dislocations that depends on interfacial misorientation and lattice spacing. Misorientation alone produces an array of screw dislocations, while lattice mismatch alone produces an array of edge dislocations. Relative sliding motion is accompanied by interfacial glide of these patterns. The frictional force resisting dislocation glide arises from periodic single pillar-pillar contact and sliding. We study the behavior of pillar-pillar contact with larger (millimeter scale) pillar samples. Inter-pillar interaction measurements are combined with a geometric model for relative sliding to calculate frictional stress that is in good agreement with experiments.

3.
Soft Matter ; 20(7): 1459-1466, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38269607

RESUMEN

Insects and small animals often utilize structured surfaces to create friction during their movements. These surfaces typically consist of pillar-like fibrils that interact with a counter surface. Understanding the mechanical interaction between such surfaces is crucial for designing structured surfaces for engineering applications. In the first part of our study, we examined friction between poly(dimethylsiloxane) (PDMS) samples with surfaces patterned with pillar-arrays. We observed that sliding between these surfaces occurs through the interfacial glide of dislocation structures. The frictional force that resists this dislocation glide is a result of periodic single pillar-pillar contact and sliding. Hence, comprehending the intricate interaction between individual pillar contacts is a fundamental prerequisite for accurately modeling the friction behavior of the pillar array. In this second part of the study, we thoroughly investigated the contact interaction between two pillars located on opposite sides of an interface, with different lateral and vertical offsets. We conducted experiments using PDMS pillars to measure both the reaction shear and normal forces. Contact interaction between pillars was then studied using finite element (FE) simulations with the Coulomb friction model, which yielded results that aligned well with the experimental data. Our result offers a fundamental solution for comprehending how fibrillar surfaces contact and interact during sliding, which has broad applications in both natural and artificial surfaces.

4.
Soft Matter ; 20(1): 89-93, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38014719

RESUMEN

It is well established that a thin silica-like surface layer is formed when a cross-linked PDMS structure is subjected to ultraviolet/ozone treatment. Due to surface geometry, especially near the corners, this silica-like surface layer has non-uniform thickness, which can impact many mechanical properties, including adhesion and fracture strength. Here we use a simple analytic model based on diffusion of reactive species to predict the thickness of the oxidized surface layer near the corners. We demonstrate that these corner solutions can be patched together to determine the thickness of the oxidized layer in complex geometries.

5.
J Chem Phys ; 159(11)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37725659

RESUMEN

Cutting of soft materials is a complex problem, which is still not well understood at the fundamental level, especially for soft materials. The cutting process we consider is slicing, which starts with indentation, followed by sliding of a knife on the material to be cut. Here, we describe cutting experiments on PDMS elastomers with three different moduli. Our experiments reveal typical stages of this cutting process, starting with indentation and ending at steady state cutting. The process starts with a pre-cutting phase in which the blade does not slip grossly relative to the solid to be cut, and deformation is mostly elastic. Slip of the blade initiates suddenly and is often accompanied by initiation of cutting. Cutting is relatively smooth in the next stage, which requires a continuous increase in shear force. For soft PDMS, this smooth cutting stage is followed by one in which folds or creases form on the cutting surface. The corresponding shear force response is no longer smooth as "steady" sliding occurs in a stick-slip fashion with oscillatory forces. The average shear force reaches a plateau and no longer increases with shear displacement. Experimental observations of the various cutting stages are interpreted quantitatively.

6.
Soft Matter ; 18(6): 1219-1227, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35040837

RESUMEN

An important problem in lubrication is the squeezing of a thin liquid film between a rigid sphere and an elastic substrate under normal contact. Numerical solution of this problem typically uses iteration techniques. A difficulty with iteration schemes is that convergence becomes increasingly difficult under increasingly heavy loads. Here we devise a numerical scheme that does not involve iteration. Instead, a linear problem is solved at every time step. The scheme is fully automatic, stable and efficient. We illustrate this technique by solving a relaxation test in which a rigid spherical indenter is brought rapidly into normal contact with a thick elastic substrate lubricated by a liquid film. The sphere is then fixed in position as the pressure relaxes. We also carried out relaxation experiments on a lubricated soft PDMS (polydimethysiloxane) substrate under different conditions. These experiments are in excellent agreement with the numerical solution.

7.
Proc Natl Acad Sci U S A ; 116(28): 13774-13779, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31209044

RESUMEN

Adhesives are ubiquitous in daily life and industrial applications. They usually fall into one of two classes: strong but irreversible (e.g., superglues) or reversible/reusable but weak (e.g., pressure-sensitive adhesives and biological and biomimetic surfaces). Achieving both superstrong adhesion and reversibility has been challenging. This task is particularly difficult for hydrogels that, because their major constituent is liquid water, typically do not adhere strongly to any material. Here, we report a snail epiphragm-inspired adhesion mechanism where a polymer gel system demonstrates superglue-like adhesion strength (up to 892 N⋅cm-2) that is also reversible. It is applicable to both flat and rough target surfaces. In its hydrated state, the softened gel conformally adapts to the target surface by low-energy deformation, which is locked upon drying as the elastic modulus is raised from hundreds of kilopascals to ∼2.3 GPa, analogous to the action of the epiphragm of snails. We show that in this system adhesion strength is based on the material's intrinsic, especially near-surface, properties and not on any near-surface structure, providing reversibility and ease of scaling up for practical applications.

8.
Biophys J ; 120(5): 781-790, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33539790

RESUMEN

The Ebola virus (EBOV) hijacks normal physiological processes by apoptotic mimicry to be taken up by the cell it infects. The initial adhesion of the virus to the cell is based on the interaction between T cell immunoglobulin and mucin domain protein, TIM, on the cell surface and phosphatidylserine (PS) on the viral outer surface. Therefore, it is important to understand the interaction between EBOV and PS and TIM, with selective blocking of the interaction as a potential therapy. Recent experimental studies have shown that for TIM-dependent EBOV entry, a mucin-like domain with a length of at least 120 amino acids is required, possibly because of the increase of area of the PS-coated surface sampled. We examine this hypothesis by modeling the process of TIM-PS adhesion using a coarse-grained molecular model. We find that the strength of individual bound PS-TIM pairs is essentially independent of TIM length. TIMs with longer mucin-like domains collectively have higher average binding strengths because of an increase in the probability of binding between EBOV and TIM proteins. Similarly, we find that for larger persistence length (less flexible), the average binding force decreases, again because of a reduction in the probability of binding.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Mucinas , Probabilidad , Receptores Virales
9.
Phys Rev Lett ; 127(20): 208001, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860052

RESUMEN

When stretched in one direction, most solids shrink in the transverse directions. In soft silicone gels, however, we observe that small-scale topographical features grow upon stretching. A quantitative analysis of the topography shows that this counterintuitive response is nearly linear, allowing us to tackle it through a small-strain analysis. We find that the surprising increase of small-scale topography with stretch is due to a delicate interplay of the bulk and surface responses to strain. Specifically, we find that surface tension changes as the material is deformed. This response is expected on general grounds for solid materials, but challenges the standard description of gel and elastomer surfaces.

10.
Soft Matter ; 17(31): 7332-7340, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34286785

RESUMEN

When a poroelastic gel is released from a patterned mold, surface stress drives deformation and solvent migration in the gel and flattens its surface profile in a time-dependent manner. Specifically, the gel behaves like an incompressible solid immediately after removal from the mold, and becomes compressible as the solvent is able to squeeze out of the polymer network. In this work, we use the finite element method (FEM) to simulate this transient surface flattening process. We assume that the surface stress is isotropic and constant, the polymer network is linearly elastic and isotropic, and that solvent flow obeys Darcy's law. The short-time and long-time surface profiles can be used to determine the surface stress and drained Poisson's ratio of the gel. Our analysis shows that the drained Poisson's ratio and the diffusivity of the gel can be obtained using interferometry and high-speed video microscopy, without mechanical measurement.

11.
Soft Matter ; 16(29): 6875-6889, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32642744

RESUMEN

Surfaces of soft solids can have significant surface stress, extensional modulus and bending stiffness. Previous theoretical studies have usually examined cases in which both the surface stress and bending stiffness are constant, assuming small deformation. In this work we consider a general formulation in which the surface can support large deformation and carry both surface stresses and surface bending moments. We demonstrate that the large deformation theory can be reduced to the classical linear theory (Shuttleworth equation). We obtain exact solutions for problems of an inflated cylindrical shell and bending of a plate with a finite thickness. Our analysis illustrates the different manners in which surface stiffening and surface bending stabilize these structures. We discuss how the complex surface constitutive behaviors affect the stress field of the bulk. Our calculation provides insights into effects of strain-dependent surface stress and surface bending in the large deformation regime, and can be used as a model to implement surface finite elements to study large deformation of complex structures.

12.
Soft Matter ; 16(11): 2760-2773, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32100796

RESUMEN

Lubricated sliding on soft elastic substrates occurs in a variety of natural and technological settings. It very often occurs in the iso-viscous elasto-hydrodynamic lubrication (EHL) regime (e.g., soft solid, low pressure). In this regime, for sliding of a smooth sphere on a soft solid, a "Hertz-like" effective contact region forms. Much of the fluid is squeezed out of the contact region although enough is retained to keep the solid surfaces fully separated. This is accompanied by complex deformation of the soft solid. The behavior of such soft lubricated contacts is controlled by a single dimensionless parameter 1/ß that can be interpreted as a normalized sliding velocity. Solving this fundamental soft-lubrication problem poses significant computational difficulty for large ß, which is the limit relevant for soft solids. As a consequence, little is known about the structure of the flow field under soft lubrication in the intake and outlet regions. Here we present a new solution of this soft lubrication problem focusing on the "Hertz" limit. We develop a formulation in polar coordinates that handles difficult computational issues much better than previous methods. We study how hydrodynamic pressure, film thickness and hydrodynamic friction vary with ß. Scaling laws for these relationships are given in closed form for a range of ß not previously accessible theoretically but that is typical in applications. The computational method presented here can be used to study other soft lubrication problems.

13.
Soft Matter ; 16(6): 1627-1635, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31960009

RESUMEN

Lubricated contacts are present in many engineering and biological systems involving soft solids. Typical mechanisms considered for controlling the sliding friction in such lubricated conditions involve bulk material compliance, fluid viscosity, viscoelastic response of the material (hysteretic friction), and breaking of the fluid film where dry contact occurs (adhesive friction). In this work we show that a two-phase periodic structure (TPPS), with a varying modulus across the sliding surface, provides significant enhancement of lubricated sliding friction when the system is in the elastohydrodynamic lubrication (EHL) regime. We propose that the enhanced friction is due to extra energy loss during periodic transitions of the sliding indenter between the compliant and stiff regions during which excess energy is dissipated through the fluid layer. This is a form of elastic hysteresis that provides a novel mechanism for friction enhancement in soft solids under lubricated conditions.

14.
Soft Matter ; 15(18): 3817-3827, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30993278

RESUMEN

We demonstrate that the surface of a commonly used polydimethylsiloxane formulation (PDMS, Sylgard 184) treated by ultraviolet ozonolysis (UVO) has significant surface stress, considerable extensional elasticity (the "Shuttleworth Effect"), and surface bending elasticity. For soft solids, phenomena such as wetting, contact, surface flattening, and stiffening by liquid inclusions are often governed by their surface, which is usually represented by a liquid-like constant surface stress. Whether the surfaces of soft solids can have more complex constitutive response is actively debated. We studied the deformation of three surface-patterned materials systems: untreated polydimethylsiloxane (PDMS), an organogel, and patterned PDMS with surface treatment by UVO. The last of these three, we found, has complex surface elasticity. This is analogous to the situation for liquids in which the presence of a second phase at the interface yields Gibbs elasticity. Our finding is of broad applicability because in soft solids the behavior of the surface can often dominate bulk deformation.

15.
Soft Matter ; 15(10): 2223-2231, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30758375

RESUMEN

Recent experiments have reported that the surface stress of soft elastic solids can increase rapidly with surface strain. For example, when a small hard sphere in adhesive contact with a soft silicone gel is slowly retracted from its rest position, it was found that the retraction force versus displacement relation cannot be explained either by the Johnson-Kendall-Roberts (JKR) theory or a recent indentation theory based on an isotropic surface stress that is independent of surface strain. In this paper, we address this problem using a finite element method to simulate the retraction process. Our numerical model does not have the restrictions of the aforementioned theories; that is, it can handle large nonlinear elastic deformation as well as a surface-strain-dependent surface stress. Our simulation is in good agreement with experimental force versus displacement data with no fitting parameters. Therefore, our results lend further support to the claim that significant strain-dependent surface stresses can occur in simple soft elastic gels. However, significant challenges remain in the reconciliation of theory and experiments, particularly regarding the geometry of the contact and substrate deformation.

16.
Langmuir ; 34(5): 1834-1843, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29309151

RESUMEN

Single-walled carbon nanotubes (SWCNTs) coated with single-stranded DNA can be effectively separated into various chiralities using an aqueous two-phase (ATP) system. Partitioning is driven by small differences in the dissolution characteristics of the hybrid between the two phases. Thus, in addition to being a separation technique, the ATP system potentially also offers a way to quantify and rank the dissolution properties of the solute (here the DNA/SWCNT hybrids), such as the solvation free energy and solubility. In this study, we propose two different approaches to quantitatively analyze the ATP partitioning of DNA/SWCNT hybrids. First, we present a model that extracts the relative solvation free energy of various DNA/SWCNT hybrids by using an expansion relative to a standard state. Second, we extract a solubility parameter by analyzing the partitioning of hybrids in the ATP system. The two approaches are found to be consistent, providing some confidence in each as a method of quantifying differences in the solubility of various DNA/SWCNT hybrids.


Asunto(s)
ADN/química , Nanotubos de Carbono/química , Solventes/química , Agua/química , Solubilidad , Termodinámica
17.
Langmuir ; 34(13): 3827-3837, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29558142

RESUMEN

Numerous biomimetic structures made from elastomeric materials have been developed to produce enhancement in properties such as adhesion, static friction, and sliding friction. As a property, one expects adhesion to be represented by an energy per unit area that is usually sensitive to the combination of shear and normal stresses at the crack front but is otherwise dependent only on the two elastic materials that meet at the interface. More specifically, one would expect that adhesion measured by indentation (a popular and convenient technique) could be used to predict adhesion hysteresis in the more practically important rolling geometry. Previously, a structure with a film-terminated fibrillar geometry exhibited dramatic enhancement of adhesion by a crack-trapping mechanism during indentation with a rigid sphere. Roughly isotropic structures such as the fibrillar geometry show a strong correlation between adhesion enhancement in indentation versus adhesion hysteresis in rolling. However, anisotropic structures, such as a film-terminated ridge-channel geometry, surprisingly show a dramatic divergence between adhesion measured by indentation versus rolling. We study this experimentally and theoretically, first comparing the adhesion of the anisotropic ridge-channel structure to the roughly isotropic fibrillar structure during indentation with a rigid sphere, where only the isotropic structure shows adhesion enhancement. Second, we examine in more detail the anomalous anisotropic film-terminated ridge-channel structure during indentation with a rigid sphere versus rolling to show why these structures show a dramatic adhesion enhancement for the rolling case and no adhesion enhancement for indentation.


Asunto(s)
Biomimética/instrumentación , Estrés Mecánico , Anisotropía , Elasticidad , Fricción
18.
Soft Matter ; 14(10): 1847-1855, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29457185

RESUMEN

A line force acting on a soft elastic solid, say due to the surface tension of a liquid drop, can cause significant deformation and the formation of a kink close to the point of force application. Analysis based on linearized elasticity theory shows that sufficiently close to its point of application, the force is borne entirely by the surface stress, not by the elasticity of the substrate; this local balance of three forces is called Neumann's triangle. However, it is not difficult to imagine realistic properties for which this force balance cannot be satisfied. For example, if the line force corresponds to surface tension of water, the numerical values of (unstretched) solid-vapor and solid-liquid surface stresses can easily be such that their sum is insufficient to balance the applied force. In such cases conventional (or naïve) Neumann's triangle of surface forces must break down. Here we study how force balance is rescued from the breakdown of naïve Neumann's triangle by a combination of (a) large hyperelastic deformations of the underlying bulk solid, and (b) increase in surface stress due to surface elasticity (surface stiffening). For a surface with constant surface stress (no surface stiffening), we show that the linearized theory remains accurate if the applied force is less than about 1.3 times the solid surface stress. For a surface in which the surface stress increases linearly with the surface stretch, we find that the Neumann's triangle construction works well as long as we replace the constant surface stress in the naïve Neumann triangle by the actual surface stress underneath the line load.

19.
Langmuir ; 33(20): 4942-4947, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28447798

RESUMEN

Droplet motion arises in many natural phenomena, ranging from the familiar gravity-driven slip and arrest of raindrops on windows to the directed transport of droplets for water harvesting by plants and animals under dry conditions. Deliberate transportation and manipulation of droplets are also important in many technological applications, including droplet-based microfluidic chemical reactors and for thermal management. Droplet motion usually requires gradients of surface energy or temperature or external vibration to overcome contact angle hysteresis. Here, we report a new phenomenon in which a drying droplet placed on a periodically compliant surface undergoes spontaneous, erratic motion in the absence of surface energy gradients and external stimuli such as vibration. By modeling the droplet as a mass-spring system on a substrate with periodically varying compliance, we show that the stability of equilibrium depends on the size of the droplet. Specifically, if the center of mass of the drop lies at a stable equilibrium point of the system, it will stay there until evaporation reduces its size and this fixed point becomes unstable; with any small perturbation, the droplet then moves to one of its neighboring fixed points.

20.
Langmuir ; 33(1): 75-81, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-27997205

RESUMEN

The Laplace pressure of a droplet placed on one side of an elastic thin film can cause significant deformation in the form of a bulge on its opposite side. Here, we show that this deformation can be detected by other droplets suspended on the opposite side of the film, leading to interaction between droplets separated by the solid (but deformable) film. The interaction is repulsive when the drops have a large overlap and attractive when they have a small overlap. Thus, if two identical droplets are placed right on top of each other (one on either side of the thin film), they tend to repel each other, eventually reaching an equilibrium configuration where there is a small overlap. This observation can be explained by analyzing the energy landscape of the droplets interacting via an elastically deformed film. We further demonstrate this idea by designing a pattern comprising a big central drop with satellite droplets. This phenomenon can lead to techniques for directed motion of droplets confined to one side of a thin elastic membrane by manipulations on the other side.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA