Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(3): 468-483.e5, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33484643

RESUMEN

Tissue resident mast cells (MCs) rapidly initiate neutrophil infiltration upon inflammatory insult, yet the molecular mechanism is still unknown. Here, we demonstrated that MC-derived tumor necrosis factor (TNF) was crucial for neutrophil extravasation to sites of contact hypersensitivity-induced skin inflammation by promoting intraluminal crawling. MC-derived TNF directly primed circulating neutrophils via TNF receptor-1 (TNFR1) while being dispensable for endothelial cell activation. The MC-derived TNF was infused into the bloodstream by directional degranulation of perivascular MCs that were part of the vascular unit with access to the vessel lumen. Consistently, intravenous administration of MC granules boosted neutrophil extravasation. Pronounced and rapid intravascular MC degranulation was also observed upon IgE crosslinking or LPs challenge indicating a universal MC potential. Consequently, the directional MC degranulation of pro-inflammatory mediators into the bloodstream may represent an important target for therapeutic approaches aimed at dampening cytokine storm syndromes or shock symptoms, or intentionally pushing immune defense.


Asunto(s)
Vasos Sanguíneos/inmunología , Dermatitis por Contacto/inmunología , Inflamación/inmunología , Mastocitos/inmunología , Neutrófilos/inmunología , Piel/patología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Circulación Sanguínea , Degranulación de la Célula , Células Cultivadas , Enfermedades del Sistema Inmune , Trastornos Leucocíticos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Neutrófila , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Vesículas Secretoras/metabolismo , Factor de Necrosis Tumoral alfa/genética
2.
Cell Mol Life Sci ; 79(7): 391, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776213

RESUMEN

The RNA-binding protein ALYREF (THOC4) is involved in transcriptional regulation and nuclear mRNA export, though its role and molecular mode of action in breast carcinogenesis are completely unknown. Here, we identified high ALYREF expression as a factor for poor survival in breast cancer patients. ALYREF significantly influenced cellular growth, apoptosis and mitochondrial energy metabolism in breast cancer cells as well as breast tumorigenesis in orthotopic mouse models. Transcriptional profiling, phenocopy and rescue experiments identified the short isoform of the lncRNA NEAT1 as a molecular trigger for ALYREF effects in breast cancer. Mechanistically, we found that ALYREF binds to the NEAT1 promoter region to enhance the global NEAT1 transcriptional activity. Importantly, by stabilizing CPSF6, a protein that selectively activates the post-transcriptional generation of the short isoform of NEAT1, as well as by direct binding and stabilization of the short isoform of NEAT1, ALYREF selectively fine-tunes the expression of the short NEAT1 isoform. Overall, our study describes ALYREF as a novel factor contributing to breast carcinogenesis and identifies novel molecular mechanisms of regulation the two isoforms of NEAT1.


Asunto(s)
Neoplasias de la Mama , Proteínas Nucleares , ARN Largo no Codificante , Proteínas de Unión al ARN , Factores de Transcripción , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica , Femenino , Humanos , Ratones , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de ARN , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo
3.
Br J Cancer ; 126(3): 456-463, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34754095

RESUMEN

BACKGROUND: The benefit of alpelisib in hormone-receptor-positive (HR+) metastatic breast cancer patients provided clinical evidence for the increasing importance of PIK3CA testing. We performed a comparison of liquid biopsy and tissue-based detection of PIK3CA mutations. MATERIALS AND METHODS: PIK3CA hotspot mutation analysis using a high-resolution SiMSen-Seq assay was performed in plasma from 93/99 eligible patients with HR+/HER2- breast cancer. Additionally, mFAST-SeqS was used to estimate the tumour fractions in plasma samples. In 72/93 patients, matched tissue was available and analysed using a customised Ion Torrent panel. RESULTS: PIK3CA mutations were detected in 48.6% of tissue samples and 47.3% of plasma samples, with identical PIK3CA mutation detected in 24/72 (33.3%) patients both in tissue and plasma. In 10 (13.9%) patients, mutations were only found in plasma, and in 6 (8.3%) patients, PIK3CA mutations found in tissue were not detectable in ctDNA. In 49/93 plasma samples without detectable PIK3CA mutations, 22 (44.9%) samples had elevated tumour fractions, implying true negative results. CONCLUSION: SiMSen-Seq-based detection of PIK3CA mutations in plasma shows advantageous concordance with the tissue analyses. A combination with an untargeted approach for detecting ctDNA fractions may confirm a negative PIK3CA result and enhance the performance of the SiMSen-Seq test.


Asunto(s)
Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasa Clase I/genética , Receptor alfa de Estrógeno/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biopsia Líquida/métodos , Mutación , Receptores de Progesterona/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Femenino , Humanos , Metástasis de la Neoplasia , Tiazoles/uso terapéutico
4.
Mol Pharmacol ; 98(2): 168-180, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32474444

RESUMEN

The two major nicotinic acetylcholine receptors (nAChRs) in the brain are the α4ß2 and α7 subtypes. A "methyl scan" of the pyrrolidinium ring was used to detect differences in nicotine's interactions with these two receptors. Each methylnicotine was investigated using voltage-clamp and radioligand binding techniques. Methylation at each ring carbon elicited unique changes in nicotine's receptor interactions. Replacing the 1'-N-methyl with an ethyl group or adding a second 1'-N-methyl group significantly reduced interaction with α4ß2 but not α7 receptors. The 2'-methylation uniquely enhanced binding and agonist potency at α7 receptors. Although 3'- and 5'-trans-methylations were much better tolerated by α7 receptors than α4ß2 receptors, 4'-methylation decreased potency and efficacy at α7 receptors much more than at α4ß2 receptors. Whereas cis-5'-methylnicotine lacked agonist activity and displayed a low affinity at both receptors, trans-5'-methylnicotine retained considerable α7 receptor activity. Differences between the two 5'-methylated analogs of the potent pyridyl oxymethylene-bridged nicotine analog A84543 were consistent with what was found for the 5'-methylnicotines. Computer docking of the methylnicotines to the Lymnaea acetylcholine binding protein crystal structure containing two persistent waters predicted most of the changes in receptor affinity that were observed with methylation, particularly the lower affinities of the cis-methylnicotines. The much smaller effects of 1'-, 3'-, and 5'-methylations and the greater effects of 2'- and 4'-methylations on nicotine α7 nAChR interaction might be exploited for the design of new drugs based on the nicotine scaffold. SIGNIFICANCE STATEMENT: Using a comprehensive "methyl scan" approach, we show that the orthosteric binding sites for acetylcholine and nicotine in the two major brain nicotinic acetylcholine receptors interact differently with the pyrrolidinium ring of nicotine, and we suggest reasons for the higher affinity of nicotine for the heteromeric receptor. Potential sites for nicotine structure modification were identified that may be useful in the design of new drugs targeting these receptors.


Asunto(s)
Nicotina/análogos & derivados , Piridinas/síntesis química , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Sitios de Unión , Masculino , Metilación , Simulación del Acoplamiento Molecular , Estructura Molecular , Nicotina/química , Piridinas/química , Piridinas/farmacología , Ratas , Relación Estructura-Actividad , Xenopus laevis
5.
Br J Cancer ; 122(12): 1744-1746, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32336753

RESUMEN

Inter-test concordance between the MammaPrint and the EndoPredict tests used to predict the risk of recurrence in breast cancer was evaluated in 94 oestrogen receptor-positive, HER2-negative breast cancers. We correlated histopathological data with clinical risk estimation as defined in the MINDACT trial. 42.6% (40/94) of cases were high-risk by MammaPrint, 44.7% (42/94) by EndoPredict (EPclin), and 45.7% (43/94) by clinical risk definition. Thirty-six percent of genomic risk predictions were discordant with a low inter-test correlation between EndoPredict and MammaPrint (p = 0.012; κ = 0.27, 95% CI [0.069, 0.46]). Clinical risk stratification did not correlate with MammaPrint (p = 0.476) but highly correlated with EndoPredict (p < 0.001). Consequently, clinically high-risk tumours (n = 43) were more frequently high-risk by EndoPredict than by MammaPrint (76.6% vs. 46.5%, p = 0.004), with 44% of cases discordantly classified and no significant association between genomic risk predictions (p = 0.294). Clinicians need to be aware that clinical pre-stratification can profoundly influence multigenomic test performance.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Perfilación de la Expresión Génica/métodos , Pruebas Genéticas/métodos , Recurrencia Local de Neoplasia/genética , Femenino , Humanos , Medición de Riesgo/métodos
6.
Drug Metab Dispos ; 48(7): 563-569, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32357971

RESUMEN

Previous work has shown that hepatic levels of human glutathione transferase zeta 1 (GSTZ1) protein, involved in tyrosine catabolism and responsible for metabolism of the investigational drug dichloroacetate, increase in cytosol after birth before reaching a plateau around age 7. However, the mechanism regulating this change of expression is still unknown, and previous studies showed that GSTZ1 mRNA levels did not correlate with GSTZ1 protein expression. In this study, we addressed the hypothesis that microRNAs (miRNAs) could regulate expression of GSTZ1. We obtained liver samples from donors aged less than 1 year or older than 13 years and isolated total RNA for use in a microarray to identify miRNAs that were downregulated in the livers of adults compared with children. From a total of 2578 human miRNAs tested, 63 miRNAs were more than 2-fold down-regulated in adults, of which miR-376c-3p was predicted to bind to the 3' untranslated region of GSTZ1 mRNA. There was an inverse correlation of miR-376c-3p and GSTZ1 protein expression in the liver samples. Using cell culture, we confirmed that miR-376c-3p could downregulate GSTZ1 protein expression. Our findings suggest that miR-376c-3p prevents production of GSTZ1 through inhibition of translation. These experiments further our understanding of GSTZ1 regulation. Furthermore, our array results provide a database resource for future studies on mechanisms regulating human hepatic developmental expression. SIGNIFICANCE STATEMENT: Hepatic glutathione transferase zeta 1 (GSTZ1) is responsible for metabolism of the tyrosine catabolite maleylacetoacetate as well as the investigational drug dichloroacetate. Through examination of microRNA (miRNA) expression in liver from infants and adults and studies in cells, we showed that expression of GSTZ1 is controlled by miRNA. This finding has application to the dosing regimen of the drug dichloroacetate. The miRNA expression profiles are provided and will prove useful for future studies of drug-metabolizing enzymes in infants and adults.


Asunto(s)
Envejecimiento/genética , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Glutatión Transferasa/genética , MicroARNs/metabolismo , Regiones no Traducidas 3'/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Femenino , Perfilación de la Expresión Génica , Glutatión Transferasa/metabolismo , Células HEK293 , Células Hep G2 , Eliminación Hepatobiliar/genética , Humanos , Lactante , Recién Nacido , Hígado/enzimología , Hígado/crecimiento & desarrollo , Masculino , Persona de Mediana Edad , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Adulto Joven
7.
Breast Cancer Res ; 21(1): 20, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30709367

RESUMEN

BACKGROUND: Non-coding RNAs and especially microRNAs have been discovered to act as master regulators of cancer initiation and progression. The aim of our study was to discover and characterize the function of yet functionally uncharacterized microRNAs in human breast carcinogenesis. METHODS: In an unbiased approach, we utilized an established model system for breast cancer (BC) stem cell formation ("mammosphere assay") to identify whole miRNome alterations in breast carcinogenesis. Clinical samples of BC patients were used to evaluate the human relevance of the newly identified miRNA candidates. One promising candidate, miR-1287-5p, was further explored on its impact on several hallmarks of cancer. The molecular mode of action was characterized by whole transcriptome analysis, in silico prediction tools, miRNA-interaction assays, pheno-copy assays, and drug sensitivity assays. RESULTS: Among several other microRNAs, miR-1287-5p was significantly downregulated in mammospheres and human BC tissue compared to normal breast tissue (p < 0.0001). Low expression levels were significantly associated with poor prognosis in BC patients. MiR-1287-5p significantly decreased cellular growth, cells in S phase of cell cycle, anchorage-independent growth, and tumor formation in vivo. In addition, we identified PIK3CB as a direct molecular interactor of miR-1287-5p and a novel prognostic factor in BC. Finally, PI3Kinase pathway chemical inhibitors combined with miR-1287-5p mimic increased the pharmacological growth inhibitory potential in triple negative BC cells. CONCLUSION: Our data identified for the first time the involvement of miR-1287-5p in human BC and suggest a potential for therapeutic interventions in difficult to treat triple negative BC.


Asunto(s)
Carcinogénesis/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Animales , Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Desnudos , Persona de Mediana Edad , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Pronóstico , Análisis de Supervivencia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Chem Res Toxicol ; 32(10): 2042-2052, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31524376

RESUMEN

Dichloroacetate (DCA) has potential for treating mitochondrial disorders and cancer by activating the mitochondrial pyruvate dehydrogenase complex. Repeated dosing of DCA results in reduced drug clearance due to inactivation of glutathione transferase ζ1 (GSTZ1), its metabolizing enzyme. We investigated the time-course of inactivation of GSTZ1 in hepatic cytosol and mitochondria after one oral dose of 100 mg/kg DCA to female Sprague-Dawley rats aged 4 weeks (young) and 52 weeks (adult) as models for children and adults, respectively. GSTZ1 activity with both DCA and an endogenous substrate, maleylacetone (MA), as well as GSTZ1 protein expression were rapidly reduced in cytosol from both ages following DCA treatment. In mitochondria, loss of GSTZ1 protein and activity with DCA were even more rapid. The cytosolic in vivo half-lives of the loss of GSTZ1 activity with DCA were 1.05 ± 0.03 and 0.82 ± 0.02 h (mean ± S.D., n = 6) for young and adult rats, respectively, with inactivation significantly more rapid in adult rats, p < 0.001. The mitochondrial inactivation half-lives were similar in young (0.57 ± 0.02 h) and adult rats (0.54 ± 0.02 h) and were significantly (p < 0.0001) shorter than cytosolic inactivation half-lives. By 24 h after DCA administration, activity and expression remained at 10% or less than control values. The in vitro GSTZ1 inactivation half-lives following incubation with 2 mM DCA in the presence of physiological chloride (Cl-) concentrations (cytosol = 44 mM, mitochondria = 1-2 mM) exhibited marked differences between subcellular fractions, being 3 times longer in the cytosol than in the mitochondria, regardless of age, suggesting that the lower Cl- concentration in mitochondria explained the faster degradation of GSTZ1. These results demonstrate for the first time that rat mitochondrial GSTZ1 is more readily inactivated by DCA than cytosolic GSTZ1, and cytosolic GSTZ1 is inactivated more rapidly in adult than young rats.


Asunto(s)
Citosol/enzimología , Ácido Dicloroacético/farmacología , Ácido Dicloroacético/toxicidad , Glutatión Transferasa/antagonistas & inhibidores , Hígado/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Animales , Ácido Dicloroacético/administración & dosificación , Femenino , Glutatión Transferasa/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Ratas , Ratas Sprague-Dawley
9.
Drug Metab Dispos ; 46(8): 1118-1128, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29853471

RESUMEN

Glutathione transferase zeta1 (GSTZ1) catalyzes glutathione (GSH)-dependent dechlorination of dichloroacetate (DCA), an investigational drug with therapeutic potential in metabolic disorders and cancer. GSTZ1 is expressed in both hepatic cytosol and mitochondria. Here, we examined the ontogeny and characterized the properties of human mitochondrial GSTZ1. GSTZ1 expression and activity with DCA were determined in 103 human hepatic mitochondrial samples prepared from livers of donors aged 1 day to 84 years. DNA from each sample was genotyped for three common GSTZ1 functional single nucleotide polymorphisms. Expression of mitochondrial GSTZ1 protein increased in an age-dependent manner to a plateau after age 21 years. Activity with DCA correlated with expression, after taking into account the somewhat higher activity of samples that were homo- or heterozygous for GSTZ1A. In samples from livers with the GSTZ1C variant, apparent enzyme kinetic constants for DCA and GSH were similar for mitochondria and cytosol after correcting for the loss of GSH observed in mitochondrial incubations. In the presence of 38 mM chloride, mitochondrial GSTZ1 exhibited shorter half-lives of inactivation compared with the cytosolic enzyme (P = 0.017). GSTZ1 protein isolated from mitochondria was shown by mass spectrometry to be identical to cytosolic GSTZ1 protein in the covered primary protein sequence. In summary, we report age-related development in the expression and activity of human hepatic mitochondrial GSTZ1 does not have the same pattern as that reported for cytosolic GSTZ1. Some properties of cytosolic and mitochondrial GSTZ1 differed, but these were not related to differences in amino acid sequence or post-translationally modified residues.


Asunto(s)
Glutatión Transferasa/genética , Hígado/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Niño , Preescolar , Citosol/metabolismo , Ácido Dicloroacético/metabolismo , Drogas en Investigación/metabolismo , Femenino , Glutatión Transferasa/metabolismo , Humanos , Lactante , Cinética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
10.
Biochim Biophys Acta ; 1860(6): 1202-10, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26850694

RESUMEN

Dichloroacetate (DCA), commonly used to treat metabolic disorders, is under investigation as an anti-cancer therapy due to its ability to reverse the Warburg effect and induce apoptosis in tumor cells. While DCA's mechanism of action is well-studied, other factors that influence its potential as a cancer treatment have not been thoroughly investigated. Here we show that expression of glutathione transferase zeta 1 (GSTZ1), the enzyme responsible for conversion of DCA to its inactive metabolite, glyoxylate, is downregulated in liver cancer and upregulated in some breast cancers, leading to abnormal expression of the protein. The cellular concentration of chloride, an ion that influences the stability of GSTZ1 in the presence of DCA, was also found to be abnormal in tumors, with consistently higher concentrations in hepatocellular carcinoma than in surrounding non-tumor tissue. Finally, results from experiments employing two- and three-dimensional cultures of HepG2 cells, parental and transduced to express GSTZ1, demonstrate that high levels of GSTZ1 expression confers resistance to the effect of high concentrations of DCA on cell viability. These results may have important clinical implications in determining intratumoral metabolism of DCA and, consequently, appropriate oral dosing.


Asunto(s)
Cloruros/metabolismo , Ácido Dicloroacético/farmacología , Glutatión Transferasa/fisiología , Neoplasias/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Células Hep G2 , Humanos , MicroARNs/análisis , Neoplasias/metabolismo
11.
Histochem Cell Biol ; 148(2): 105-115, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28321501

RESUMEN

Tumor heterogeneity is considered a major cause for therapy resistance in colorectal cancer. Sub-populations of cells with different genetic alterations may exist in spatially distinct areas. Upon therapy, resistant sub-clones may enrich and ultimately lead to disease progression. Although ample data are available on tumors which are heterogeneous on a morphological level, only little is known about morphologically homogeneous tumors. We aimed to investigate if morphologically homogeneous colorectal cancer can harbor a heterogeneous genetic landscape. We chose to microdissect six morphologically homogeneous colorectal carcinomas into several areas and performed next-generation sequencing (NGS) to identify tumors with genetic heterogeneity. We then applied an mRNA-based in situ mutation detection technology based on padlock probes to localize and visualize mutations directly in the tumor tissue. In three out of six tumors, NGS revealed a high rate of variability of mutations between different tumor areas. We selected two cases for in situ mutation detection to visualize genetic heterogeneity. In situ mutation detection confirmed differences in mutant allele frequencies between different tumor areas of morphological homogeneous tumors. We conclude that genetic heterogeneity in morphologically homogeneous colorectal cancer is an observable, but underreported event. Our results illustrate the power of in situ mutation analysis to visualize genetic heterogeneity directly in tumor tissue.


Asunto(s)
Neoplasias Colorrectales/genética , Análisis Mutacional de ADN , Heterogeneidad Genética , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Humanos , Mutación Puntual/genética
12.
Am J Pathol ; 186(1): 15-23, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26718977

RESUMEN

Usual ductal hyperplasia (UDH) of the breast is generally regarded as a nonneoplastic proliferation, albeit loss of heterozygosity has long been reported in a part of these lesions. To gain deeper insights into the molecular drivers of these lesions, an extended mutation profiling was performed. The coding regions of 409 cancer-related genes were investigated by next-generation sequencing in 16 cases of UDH, nine unassociated with neoplasia (classic) and seven arising within papillomas. Phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (mTOR) activation was investigated by phosphorylated AKT, mTOR, and S6 immunohistochemistry. Of 16 lesions, 10 (63%) were mutated; 56% of classic lesions were unassociated with neoplasia, and 71% of lesions arose in papillomas. Fourteen missense mutations were detected: PIK3CA [6 (43%) of 14], AKT1 [2 (14%) of 14], as well as GNAS, MTOR, PIK3R1, LPHN3, LRP1B, and IGF2R [each 1 (7%) of 14]. Phosphorylated mTOR was seen in 83% and phosphorylated S6 in 86% of evaluable lesions (phospho-AKT staining was technically uninterpretable). In conclusion, UDH displays mutations of the phosphatidylinositol 3-kinase/AKT/mTOR axis at different levels, with PIK3R1, MTOR, and GNAS mutations not previously described. Specifically, oncogenic G-protein activation represents a yet unrecognized route to proliferation in UDH. On the basis of evidence of activating mutations, loss of heterozygosity, and a mass forming proliferation, we propose that UDH is most appropriately viewed as an early neoplastic intraductal proliferation.


Asunto(s)
Enfermedades de la Mama/genética , Enfermedades de la Mama/patología , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Adulto , Anciano , Fosfatidilinositol 3-Quinasa Clase I , Análisis Mutacional de ADN/métodos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hiperplasia/genética , Hiperplasia/patología , Inmunohistoquímica , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Adulto Joven
13.
J Cell Sci ; 126(Pt 5): 1207-17, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23321641

RESUMEN

The cell has many mechanisms for protecting the integrity of its genome. These mechanisms are often weakened or absent in many cancers, leading to high rates of chromosomal instability in tumors. Control of the cell cycle is crucial for the function of these checkpoints, and is frequently lost in cancers as well. Overexpression of Cyclin D1 in a large number of breast cancers causes overactivation of the cyclin-dependent kinases, including Cdk2. Constitutive Cdk2 activation through Cyclin D1 generates tumors in mice that are aneuploid and have many characteristics indicative of chromosomal instability. Expression of these complexes in the MCF10A cell line leads to retinoblastoma protein (Rb) hyperphosphorylation, a subsequent increase in proliferation rate, and increased expression of the spindle assembly checkpoint protein Mad2. This results in a strengthening of the spindle assembly checkpoint and renders cells more sensitive to the spindle poison paclitaxel. Constitutive Rb phosphorylation also causes a weakening of the p53-dependent tetraploidy checkpoint. Cells with overactive Cdk2 fail to arrest after mitotic slippage in the presence of paclitaxel or cytokinesis failure during treatment with cytochalasin-B, generating 8N populations. This additional increase in DNA content appears to further intensify the tetraploidy checkpoint in a step-wise manner. These polyploid cells are not viable long-term, either failing to undergo division or creating daughter cells that are unable to undergo subsequent division. This study raises intriguing questions about the treatment of tumors with overactive Cdk2.


Asunto(s)
Aneuploidia , Puntos de Control del Ciclo Celular/fisiología , Quinasa 2 Dependiente de la Ciclina/metabolismo , Huso Acromático/metabolismo , Tetraploidía , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Centrosoma/metabolismo , Inestabilidad Cromosómica/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Citometría de Flujo , Humanos , Immunoblotting , Microscopía Fluorescente , Huso Acromático/genética
14.
Biochem Biophys Res Commun ; 459(3): 463-8, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25748576

RESUMEN

We recently reported that, in a concentration-dependent manner, chloride protects hepatic glutathione transferase zeta 1 from inactivation by dichloroacetate, an investigational drug used in treating various acquired and congenital metabolic diseases. Despite the importance of chloride ions in normal physiology, and decades of study of chloride transport across membranes, the literature lacks information on chloride concentrations in animal tissues other than blood. In this study we measured chloride concentrations in human liver samples from male and female donors aged 1 day to 84 years (n = 97). Because glutathione transferase zeta 1 is present in cytosol and, to a lesser extent, in mitochondria, we measured chloride in these fractions by high-performance liquid chromatography analysis following conversion of the free chloride to pentafluorobenzylchloride. We found that chloride concentration decreased with age in hepatic cytosol but increased in liver mitochondria. In addition, chloride concentrations in cytosol, (105.2 ± 62.4 mM; range: 24.7-365.7 mM) were strikingly higher than those in mitochondria (4.2 ± 3.8 mM; range 0.9-22.2 mM). These results suggest a possible explanation for clinical observations seen in patients treated with dichloroacetate, whereby children metabolize the drug more rapidly than adults following repeated doses, and also provide information that may influence our understanding of normal liver physiology.


Asunto(s)
Envejecimiento/metabolismo , Cloruros/metabolismo , Hígado/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Cromatografía Líquida de Alta Presión , Citosol/metabolismo , Ácido Dicloroacético/efectos adversos , Ácido Dicloroacético/farmacocinética , Ácido Dicloroacético/farmacología , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Femenino , Glutatión Transferasa/antagonistas & inhibidores , Glutatión Transferasa/metabolismo , Humanos , Lactante , Recién Nacido , Transporte Iónico , Hígado/efectos de los fármacos , Masculino , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Persona de Mediana Edad , Mitocondrias Hepáticas/metabolismo , Adulto Joven
15.
Mod Pathol ; 28(7): 895-903, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25769001

RESUMEN

Desmoplastic malignant melanoma is a distinct melanoma entity histologically subtyped into mixed and pure forms due to significantly reduced lymph node metastases in the pure form. Recent reports investigating common actionable driver mutations have demonstrated a lack of BRAF, NRAS, and KIT mutation in pure desmoplastic melanoma. In search for alternative driver mutations next generation amplicon sequencing for hotspot mutations in 50 genes cardinal to tumorigenesis was performed and in addition the RET G691S polymorphism was investigated. Data from 21 desmoplastic melanomas (12 pure and 9 mixed) were retrieved. Pure desmoplastic melanomas were either devoid of mutations (50%) or displayed mutations in tumor suppressor genes (TP53, CDKN2A, and SMAD4) singularly or in combination with the exception of a PIK3CA double-mutation lacking established biological relevance. Mixed desmoplastic melanomas on the contrary were frequently mutated (89%), and 67% exhibited activating mutations similar to common-type cutaneous malignant melanomas (BRAF, NRAS, FGFR2, and ERBB2). Separate analysis of morphologically heterogeneous tumor areas in four mixed desmoplastic malignant melanomas displayed no difference in mutation status and RET G691 status. GNAQ and GNA11, two oncogenes in BRAF and NRAS wild-type uveal melanomas, were not mutated in our cohort. The RET G691S polymorphism was found in 25% of pure and 38% of mixed desmoplastic melanomas. Apart from RET G691S our findings demonstrate absence of activating driver mutations in pure desmoplastic melanoma beyond previously investigated oncogenes (BRAF, NRAS, and KIT). The findings underline the therapeutic dichotomy of mixed versus pure desmoplastic melanoma with regard to activating mutations primarily of the mitogen-activated protein kinase pathway.


Asunto(s)
Melanoma/genética , Mutación , Neoplasias Cutáneas/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , GTP Fosfohidrolasas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Melanoma/patología , Proteínas de la Membrana/genética , Persona de Mediana Edad , Proteínas Proto-Oncogénicas B-raf/genética , Receptor ErbB-2/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Neoplasias Cutáneas/patología , Melanoma Cutáneo Maligno
16.
Proc Natl Acad Sci U S A ; 108(9): 3743-8, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21321191

RESUMEN

Because our in silico analysis with a human transcription factor database demonstrated the presence of several binding sites for NF-κB, a central regulator of cellular immune and inflammatory responses, in the adeno-associated virus (AAV) genome, we investigated whether AAV uses NF-κB during its life cycle. We used small molecule modulators of NF-κB in HeLa cells transduced with recombinant AAV vectors. VP16, an NF-κB activator, augmented AAV vector-mediated transgene expression up to 25-fold. Of the two NF-κB inhibitors, Bay11, which blocks both the canonical and the alternative NF-κB pathways, totally ablated transgene expression, whereas pyrrolidone dithiocarbamate, which interferes with the classical NF-κB pathway, had no effect. Western blot analyses confirmed the abundance of the nuclear p52 protein component of the alternative NF-κB pathway in the presence of VP16, which was ablated by Bay11, suggesting that AAV transduction activates the alternative NF-κB pathway. In vivo, hepatic AAV gene transfer activated the canonical NF-κB pathway within 2 h, resulting in expression of proinflammatory cytokines and chemokines (likely reflecting the sensing of viral particles by antigen-presenting cells), whereas the alternative pathway was activated by 9 h. Bay11 effectively blocked activation of both pathways without interfering with long-term transgene expression while eliminating proinflammatory cytokine expression. These studies suggest that transient immunosuppression with NF-κB inhibitors before transduction with AAV vectors should lead to a dampened immune response, which has significant implications in the optimal use of AAV vectors in human gene therapy.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Inmunidad/genética , FN-kappa B/metabolismo , Transducción de Señal , Animales , Células Presentadoras de Antígenos/efectos de los fármacos , Células Presentadoras de Antígenos/metabolismo , Células Presentadoras de Antígenos/virología , Sitios de Unión , Citocinas/metabolismo , Dependovirus/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Inmunidad/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hígado/virología , Ratones , FN-kappa B/antagonistas & inhibidores , Nitrilos/farmacología , Infecciones por Parvoviridae/genética , Infecciones por Parvoviridae/metabolismo , Infecciones por Parvoviridae/virología , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sulfonas/farmacología , Secuencias Repetidas Terminales/genética , Factores de Tiempo , Factores de Transcripción/metabolismo , Transgenes
17.
Biochemistry ; 52(20): 3489-501, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23627734

RESUMEN

Previous studies have shown conflicting data regarding cyclin D1/cyclin-dependent kinase 2 (Cdk2) complexes, and considering the widespread overexpression of cyclin D1 in cancer, it is important to fully understand their relevance. While many have shown that cyclin D1 and Cdk2 form active complexes, others have failed to show activity or association. Here, using a novel p21-PCNA fusion protein as well as p21 mutant proteins, we show that p21 is a required scaffolding protein, with cyclin D1 and Cdk2 failing to complex in its absence. These p21/cyclin D1/Cdk2 complexes are active and also bind the trimeric PCNA complex, with each trimer capable of independently binding distinct cyclin/Cdk complexes. We also show that increased p21 levels due to treatment with chemotherapeutic agents result in increased formation and kinase activity of cyclin D1/Cdk2 complexes, and that cyclin D1/Cdk2 complexes are able to phosphorylate a number of substrates in addition to Rb. Nucleophosmin and Cdh1, two proteins important for centrosome replication and implicated in the chromosomal instability of cancer, are shown to be phosphorylated by cyclin D1/Cdk2 complexes. Additionally, polypyrimidine tract binding protein-associated splicing factor (PSF) is identified as a novel Cdk2 substrate, being phosphorylated by Cdk2 complexed with either cyclin E or cyclin D1, and given the many functions of PSF, it could have important implications on cellular activity.


Asunto(s)
Ciclina D1/química , Quinasa 2 Dependiente de la Ciclina/química , Sitios de Unión , Células Cultivadas , Ciclina D1/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Células HCT116 , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Especificidad por Sustrato
18.
BMC Med Genet ; 14: 129, 2013 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-24373500

RESUMEN

BACKGROUND: Germline genetic testing for familial cancer syndromes is usually performed serially for the most likely genetic causes. In recent years the way genetic testing carried out has changed, as next generation sequencing now allows the simultaneous testing of multiple susceptibility genes at low costs. CASE PRESENTATION: Here, we present a female with bilateral breast cancer and endometrial adenocarcinoma. After simultaneous sequencing of 150 genes (890 kb) associated with hereditary cancer we identified pathogenic mutations in two high-penetrance genes, i.e. TP53 and CDH1 that would most likely not have been elucidated by serial screening of candidate genes. CONCLUSION: As the two mutated genes are located on different chromosomes and cause different cancer syndromes these findings had a tremendous impact not only on genetic counseling of the index patient and her family but also on subsequent surveillance strategies.


Asunto(s)
Adenocarcinoma/genética , Neoplasias de la Mama/genética , Cadherinas/genética , Neoplasias Endometriales/genética , Mutación , Proteína p53 Supresora de Tumor/genética , Antígenos CD , Cadherinas/metabolismo , Femenino , Pruebas Genéticas/métodos , Humanos , Masculino , Persona de Mediana Edad , Linaje , Proteína p53 Supresora de Tumor/metabolismo
19.
Arch Pathol Lab Med ; 147(12): 1451-1457, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36897999

RESUMEN

CONTEXT.­: Low-grade fibromatosis-like metaplastic carcinoma (FLMC) is a very rare subtype of triple-negative metaplastic (spindle cell) breast carcinoma. It is characterized by the proliferation of spindle cells closely resembling fibromatosis, which represents a benign fibroblastic/myofibroblastic breast proliferation. Unlike most triple-negative and basal-like breast cancers, FLMC has a very low potential for metastases, but demonstrates frequent local recurrences. OBJECTIVE.­: To genetically characterize FLMC. DESIGN.­: To this end, we analyzed 7 cases by targeted next-generation sequencing for 315 cancer-related genes and performed comparative microarray copy number analysis in 5 of these cases. RESULTS.­: All cases shared TERT alterations (6 patients with recurrent c.-124C>T TERT promoter mutation and 1 patient with copy number gain encompassing the TERT locus), had oncogenic PIK3CA/PIK3R1 mutations (activation of the PI3K/AKT/mTOR pathway), and lacked mutations in TP53. TERT was overexpressed in all FLMCs. CDKN2A/B loss or mutation was observed in 4 of 7 cases (57%). Furthermore, tumors displayed chromosomal stability, with only few copy number variations and a low tumor mutational burden. CONCLUSIONS­: We conclude that FLMCs typically show the recurrent TERT promoter mutation c.-124C>T, activation of the PI3K/AKT/mTOR pathway, low genomic instability, and wild-type TP53. In conjunction with previous data of metaplastic (spindle cell) carcinoma with and without fibromatosis-like morphology, FLMC is most likely distinguished by TERT promoter mutation. Thus, our data support the notion of a distinct subgroup within low-grade metaplastic breast cancer with spindle cell morphology and associated TERT mutations.


Asunto(s)
Neoplasias de la Mama , Carcinoma , Fibroma , Telomerasa , Humanos , Femenino , Variaciones en el Número de Copia de ADN , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma/patología , Serina-Treonina Quinasas TOR/genética , Mutación , Fibroma/genética , Fibroma/patología , Telomerasa/genética
20.
Front Oncol ; 12: 998907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483038

RESUMEN

A search in the GDC Data Portal revealed 304 documented somatic mutations of the KCNJ3 gene in primary tumors (out of 10.202 cases). Most affected tumor types were carcinomas from uterus, skin and lung, while breast cancer exerted the lowest number of somatic mutations. We focused our research on 15 missense mutations within the region between TM1 and TM2, comprising the pore helix and ion selectivity signature. Expression was measured by confocal laser scan microscopy of eGFP tagged GIRK1 subunits, expressed with and without GIRK4 in oocytes of Xenopus laevis. GIRK ion currents were activated via coexpressed m2Rs and measured by the Two Electrode Voltage Clamp technique. Magnitude of the total GIRK current, as well as the fraction of current inducible by the agonist, were measured. Ion selectivity was gauged by assessment of the PNa+/PK+ ratio, calculated by the GIRK current reversal potential in extracellular media at different Na+ and K+ concentrations. None of the tested mutations was able to form functional GIRK1 homooligomeric ion channels. One of the mutations, G145A, which locates directly to the ion selectivity signature, exerted an increased PNa+/PK+ ratio. Generally, the missense mutations studied can be categorized into three groups: (i) normal/reduced expression accompanied by reduced/absent function (S132Y, F136L, E139K, G145A, R149Q, R149P, G178D, S185Y, Q186R), (ii) normal/increased expression as well as increased function (E140M, A142T, M184I) and (iii) miniscule expression but increased function relative to expression levels (I151N, G158S). We conclude, that gain of function mutations, identical or similar to categories (ii) and (iii), may potentially be involved in genesis and progression of malignancies in tissues that exert a high rate of occurrence of somatic mutations of KCNJ3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA