Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Ecol ; 73(3): 699-709, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27928597

RESUMEN

We studied the predator-prey interactions between heterotrophic protists and endospores of Bacillus cereus group bacteria, in order to gain insight on survival and dispersal of B. cereus endospores in the environment. It has been hypothesised that the spore stage protects against digestion by predating protists. Therefore, experiments were carried out to investigate the impact of B. cereus endospores and vegetative cells, as the only food source, on individual amoeboid, flagellated and ciliated protists. The presence of fluorescent-labelled intracellular bacteria confirmed that B. cereus endospores as well as vegetative cells were ingested by protists and appeared intact in the food vacuoles when observed by epifluorescence microscopy. Furthermore, protist growth and bacterial predation were followed by qPCR. Protists were able to grow on vegetative cells as well as endospores of B. cereus, despite the lower cell division rates observed for some protists when feeding on bacterial endospores. Survival and proliferation of ingested bacteria inside protists cells was also observed. Finally, B. cereus spore germination and growth was observed within all protists with higher abundance in the amoeboid protist after antibiotic treatment of the protist surface. These observations support that protists can act as a potential breeding ground for B. cereus endospores.


Asunto(s)
Bacillus cereus/crecimiento & desarrollo , Eucariontes/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Animales , Recuento de Colonia Microbiana , Conducta Predatoria
2.
Proc Natl Acad Sci U S A ; 106(30): 12394-9, 2009 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19622725

RESUMEN

Many marine zooplankters, particularly among copepods, are "ambush feeders" that passively wait for their prey and capture them by fast surprise attacks. This strategy must be very demanding in terms of muscle power and sensing capabilities, but the detailed mechanisms of the attacks are unknown. Using high-speed video we describe how copepods perform spectacular attacks by precision maneuvering during a rapid jump. We show that the flow created by the attacking copepod is so small that the prey is not pushed away, and that the attacks are feasible because of their high velocity (approximately 100 mm x s(-1)) and short duration (few ms), which leaves the prey no time for escape. Simulations and analytical estimates show that the viscous boundary layer that develops around the attacking copepod is thin at the time of prey capture and that the flow around the prey is small and remains potential flow. Although ambush feeding is highly successful as a feeding strategy in the plankton, we argue that power requirements for acceleration and the hydrodynamic constraints restrict the strategy to larger (> 0.25 mm), muscular forms with well-developed prey perception capabilities. The smallest of the examined species is close to this size limit and, in contrast to the larger species, uses its largest possible jump velocity for such attacks. The special requirements to ambush feeders with such attacks may explain why this strategy has evolved to perfection only a few times among planktonic suspension feeders (few copepod families and chaetognaths).


Asunto(s)
Copépodos/fisiología , Conducta Alimentaria/fisiología , Conducta Predatoria/fisiología , Zooplancton/fisiología , Animales , Fenómenos Biomecánicos , Dinoflagelados/fisiología , Factores de Tiempo , Grabación de Videodisco
3.
Mar Drugs ; 9(3): 345-58, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21556164

RESUMEN

A survey of the production of polyunsaturated aldehydes (PUA) of manipulated plankton communities is presented here. PUA are phytoplankton-derived metabolites that are proposed to play an important role in chemically mediated plankton interactions. Blooms of different intensities of the diatom Skeletonema marinoi were generated in eight mesocosms filled with water from the surrounding fjord by adding different amounts of a starting culture and nutrients. This set-up allowed us to follow PUA production of the plankton community over the entire induced bloom development, and to compare it with the natural levels of PUA. We found that S. marinoi is a major source for the particulate PUA 2,4-heptadienal and 2,4-octadienal (defined as PUA released upon wounding of the diatom cells) during the entire bloom development. Just before, and during, the decline of the induced diatom blooms, these PUA were also detected in up to 1 nM concentrations dissolved in the water. In addition, we detected high levels of the PUA 2,4-decadienal that was not produced by the diatom S. marinoi. Particulate decadienal correlated well with the cell counts of the prymnesiophyte Phaeocystis sp. that also developed in the fertilized mesocosms. Particulate decadienal levels were often even higher than those of diatom-derived PUA, indicating that PUA sources other than diatoms should be considered when it comes to the evaluation of the impact of these metabolites.


Asunto(s)
Aldehídos/metabolismo , Diatomeas/metabolismo , Fitoplancton/metabolismo , Alcadienos/metabolismo , Biología Marina
4.
Harmful Algae ; 87: 101622, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31349884

RESUMEN

Blooms of Alexandrium spp. are a well-known phenomenon in Northern European waters. While A. tamarense/catenella, and A. pseudogonyaulax have been reported from marine waters, high densities of A. ostenfeldii are mainly observed at lower salinities in North Sea estuaries and the Baltic Sea, suggesting salinity as a driver of Alexandrium species composition and toxin distribution. To investigate this relationship, an oceanographic expedition through a natural salinity gradient was conducted in June 2016 along the coasts of Denmark. Besides hydrographic data, phytoplankton and sediment samples were collected for analyses of Alexandrium spp. cell and cyst abundances, for toxin measurement and cell isolation. Plankton data revealed the predominance of A. pseudogonyaulax at all transect stations while A. ostenfeldii and A. catenella generally contributed a minor fraction to the Alexandrium community. High abundances of A. pseudogonyaulax in the shallow enclosed Limfjord were accompanied by high amounts of goniodomin A (GDA). This toxin was also detected at low abundances along with A. pseudogonyaulax in the North Sea and the Kattegat. Genetic and morphological characterization of established strains showed high similarity of the Northern European population to distant geographic populations. Despite low cell abundances of A. ostenfeldii, different profiles of cycloimines were measured in the North Sea and in the Limfjord. This field survey revealed that salinity alone does not determine Alexandrium species and toxin distribution, but emphasizes the importance of habitat conditions such as proximity to seed banks, shelter, and high nutrient concentrations. The results show that A. pseudogonyaulax has become a prominent member of the Alexandrium spp. community over the past decade in the study area. Analyses of long term monitoring data from the Limfjord confirmed a recent shift to A. pseudogonyaulax dominance. Cyst and toxin records of the species in Kiel Bight suggest a spreading potential into the brackish Baltic Sea, which might lead to an expansion of blooms under future climate conditions.


Asunto(s)
Dinoflagelados , Salinidad , Éteres , Europa (Continente) , Macrólidos , Aguas Salinas
5.
J Phycol ; 45(4): 855-63, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27034215

RESUMEN

Symbiodinium californium (#383, Banaszak et al. 1993) is one of two known dinoflagellate symbionts of the intertidal sea anemones Anthopleura elegantissima, A. xanthogrammica, and A. sola and occurs only in hosts at southern latitudes of the North Pacific. To investigate if temperature restricts the latitudinal distribution of S. californium, growth and photosynthesis at a range of temperatures (5°C-30°C) were determined for cultured symbionts. Mean specific growth rates were the highest between 15°C and 28°C (µ 0.21-0.26 · d(-1) ) and extremely low at 5, 10, and 30°C (0.02-0.03 · d(-1) ). Average doubling times ranged from 2.7 d (20°C) to 33 d (5, 10, and 30°C). Cells cultured at 10°C had the greatest cell volume (821 µm(3) ) and the highest percentage of motile cells (64.5%). Growth and photosynthesis were uncoupled; light-saturated maximum photosynthesis (Pmax ) increased from 2.9 pg C · cell(-1 ) · h(-1) at 20°C to 13.2 pg C · cell(-1 ) · h(-1) at 30°C, a 4.5-fold increase. Less than 11% of daily photosynthetically fixed carbon was utilized for growth at 5, 10, and 30°C, indicating the potential for high carbon translocation at these temperatures. Low temperature effects on growth rate, and not on photosynthesis and cell morphology, may restrict the distribution of S. californium to southern populations of its host anemones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA