Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 185, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38802738

RESUMEN

BACKGROUND: Schaalia species are primarily found among the oral microbiota of humans and other animals. They have been associated with various infections through their involvement in biofilm formation, modulation of host responses, and interaction with other microorganisms. In this study, two strains previously indicated as Actinomyces spp. were found to be novel members of the genus Schaalia based on their whole genome sequences. RESULTS: Whole-genome sequencing revealed both strains with a genome size of 2.3 Mbp and GC contents of 65.5%. Phylogenetics analysis for taxonomic placement revealed strains NCTC 9931 and C24 as distinct species within the genus Schaalia. Overall genome-relatedness indices including digital DNA-DNA hybridization (dDDH), and average nucleotide/amino acid identity (ANI/AAI) confirmed both strains as distinct species, with values below the species boundary thresholds (dDDH < 70%, and ANI and AAI < 95%) when compared to nearest type strain Schaalia odontolytica NCTC 9935 T. Pangenome and orthologous analyses highlighted their differences in gene properties and biological functions compared to existing type strains. Additionally, the identification of genomic islands (GIs) and virulence-associated factors indicated their genetic diversity and potential adaptive capabilities, as well as potential implications for human health. Notably, CRISPR-Cas systems in strain NCTC 9931 underscore its adaptive immune mechanisms compared to strain C24. CONCLUSIONS: Based on these findings, strain NCTC 9931T (= ATCC 17982T = DSM 43331T = CIP 104728T = CCUG 18309T = NCTC 14978T = CGMCC 1.90328T) represents a novel species, for which the name Schaalia dentiphila subsp. dentiphila sp. nov. subsp. nov. is proposed, while strain C24T (= NCTC 14980T = CGMCC 1.90329T) represents a distinct novel subspecies, for which the name Schaalia dentiphila subsp. denticola. subsp. nov. is proposed. This study enriches our understanding of the genomic diversity of Schaalia species and paves the way for further investigations into their roles in oral health. SIGNIFICANCE: This research reveals two Schaalia strains, NCTC 9931 T and C24T, as novel entities with distinct genomic features. Expanding the taxonomic framework of the genus Schaalia, this study offers a critical resource for probing the metabolic intricacies and resistance patterns of these bacteria. This work stands as a cornerstone for microbial taxonomy, paving the way for significant advances in clinical diagnostics.


Asunto(s)
Composición de Base , Genoma Bacteriano , Boca , Filogenia , Humanos , Genoma Bacteriano/genética , Boca/microbiología , Secuenciación Completa del Genoma , ADN Bacteriano/genética , Islas Genómicas/genética , Hibridación de Ácido Nucleico
2.
BMC Genomics ; 24(1): 734, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049764

RESUMEN

BACKGROUND: Actinomyces strains are commonly found as part of the normal microflora on human tissue surfaces, including the oropharynx, gastrointestinal tract, and female genital tract. Understanding the diversity and characterization of Actinomyces species is crucial for human health, as they play an important role in dental plaque formation and biofilm-related infections. Two Actinomyces strains ATCC 49340 T and ATCC 51655 T have been utilized in various studies, but their accurate species classification and description remain unresolved. RESULTS: To investigate the genomic properties and taxonomic status of these strains, we employed both 16S rRNA Sanger sequencing and whole-genome sequencing using the Illumina HiSeq X Ten platform with PE151 (paired-end) sequencing. Our analyses revealed that the draft genome of Actinomyces acetigenes ATCC 49340 T was 3.27 Mbp with a 68.0% GC content, and Actinomyces stomatis ATCC 51655 T has a genome size of 3.08 Mbp with a 68.1% GC content. Multi-locus (atpA, rpoB, pgi, metG, gltA, gyrA, and core genome SNPs) sequence analysis supported the phylogenetic placement of strains ATCC 51655 T and ATCC 49340 T as independent lineages. Digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and average amino acid identity (AAI) analyses indicated that both strains represented novel Actinomyces species, with values below the threshold for species demarcation (70% dDDH, 95% ANI and AAI). Pangenome analysis identified 5,731 gene clusters with strains ATCC 49340 T and ATCC 51655 T possessing 1,515 and 1,518 unique gene clusters, respectively. Additionally, genomic islands (GIs) prediction uncovered 24 putative GIs in strain ATCC 49340 T and 16 in strain ATCC 51655 T, contributing to their genetic diversity and potential adaptive capabilities. Pathogenicity analysis highlighted the potential human pathogenicity risk associated with both strains, with several virulence-associated factors identified. CRISPR-Cas analysis exposed the presence of CRISPR and Cas genes in both strains, indicating these strains might evolve a robust defense mechanism against them. CONCLUSION: This study supports the classification of strains ATCC 49340 T and ATCC 51655 T as novel species within the Actinomyces, in which the name Actinomyces acetigenes sp. nov. (type strain ATCC 49340 T = VPI D163E-3 T = CCUG 34286 T = CCUG 35339 T) and Actinomyces stomatis sp. nov. (type strain ATCC 51655 T = PK606T = CCUG 33930 T) are proposed.


Asunto(s)
Actinomyces , Boca , Humanos , Femenino , Actinomyces/genética , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Hibridación de Ácido Nucleico , Nucleótidos , ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química
3.
Appl Environ Microbiol ; 88(13): e0069822, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35695569

RESUMEN

Extracellular DNA (eDNA) is an important component of biofilm matrix that serves to maintain biofilm structural integrity, promotes genetic exchange within the biofilm, and provides protection against antimicrobial compounds. Advances in microscopy techniques have provided evidence of the cobweb- or lattice-like structures of eDNA within biofilms from a range of environmental niches. However, methods to reliably assess the abundance and architecture of eDNA remain lacking. This study aimed to address this gap by development of a novel, high-throughput image acquisition and analysis platform for assessment of eDNA networks in situ within biofilms. Utilizing Streptococcus gordonii as the model, the capacity for this imaging system to reliably detect eDNA networks and monitor changes in abundance and architecture (e.g., strand length and branch number) was verified. Evidence was provided of a synergy between glucans and eDNA matrices, while it was revealed that surface-bound nuclease SsnA could modify these eDNA structures under conditions permissive for enzymatic activity. Moreover, cross talk between the competence and hexaheptapeptide permease systems was shown to regulate eDNA release by S. gordonii. This novel imaging system can be applied across the wider field of biofilm research, with potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit. IMPORTANCE Extracellular DNA (eDNA) is critical for maintaining the structural integrity of many microbial biofilms, making it an attractive target for the management of biofilms. However, our knowledge and targeting of eDNA are currently hindered by a lack of tools for the quantitative assessment of eDNA networks within biofilms. Here, we demonstrate use of a novel image acquisition and analysis platform with the capacity to reliably monitor the abundance and architecture of eDNA networks. Application of this tool to Streptococcus gordonii biofilms has provided new insights into how eDNA networks are stabilized within the biofilm and the pathways that can regulate eDNA release. This highlights how exploitation of this novel imaging system across the wider field of biofilm research has potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit.


Asunto(s)
Biopelículas , Streptococcus gordonii , ADN , ADN Bacteriano/genética , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Streptococcus gordonii/fisiología
4.
Appl Environ Microbiol ; 87(22): e0155821, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34469191

RESUMEN

Cell-cell adhesion between oral bacteria plays a key role in the development of polymicrobial communities such as dental plaque. Oral streptococci such as Streptococcus gordonii and Streptococcus oralis are important early colonizers of dental plaque and bind to a wide range of different oral microorganisms, forming multispecies clumps or "coaggregates." S. gordonii actively responds to coaggregation by regulating gene expression. To further understand these responses, we assessed gene regulation in S. gordonii and S. oralis following coaggregation in 25% human saliva. Coaggregates were formed by mixing, and after 30 min, RNA was extracted for dual transcriptome sequencing (RNA-Seq) analysis. In S. oralis, 18 genes (6 upregulated and 12 downregulated) were regulated by coaggregation. Significantly downregulated genes encoded functions such as amino acid and antibiotic biosynthesis, ribosome, and central carbon metabolism. In total, 28 genes were differentially regulated in Streptococcus gordonii (25 upregulated and 3 downregulated). Many genes associated with transporters and a two-component (NisK/SpaK) regulatory system were upregulated following coaggregation. Our comparative analyses of S. gordonii-S. oralis with different previously published S. gordonii pairings (S. gordonii-Fusobacterium nucleatum and S. gordonii-Veillonella parvula) suggest that the gene regulation is specific to each pairing, and responses do not appear to be conserved. This ability to distinguish between neighboring bacteria may be important for S. gordonii to adapt appropriately during the development of complex biofilms such as dental plaque. IMPORTANCE Dental plaque is responsible for two of the most prevalent diseases in humans, dental caries and periodontitis. Controlling the formation of dental plaque and preventing the transition from oral health to disease requires a detailed understanding of microbial colonization and biofilm development. Streptococci are among the most common colonizers of dental plaque. This study identifies key genes that are regulated when oral streptococci bind to one another, as they do in the early stages of dental plaque formation. We show that specific genes are regulated in two different oral streptococci following the formation of mixed-species aggregates. The specific responses of S. gordonii to coaggregation with S. oralis are different from those to coaggregation with other oral bacteria. Targeting the key genes that are upregulated during interspecies interactions may be a powerful approach to control the development of biofilm and maintain oral health.


Asunto(s)
Placa Dental , Streptococcus gordonii , Streptococcus oralis , Transcriptoma , Placa Dental/microbiología , Humanos , RNA-Seq , Streptococcus gordonii/genética , Streptococcus oralis/genética
5.
Crit Rev Microbiol ; 47(5): 612-629, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33899666

RESUMEN

Helicobacter pylori is associated with chronic gastritis, gastric or duodenal ulcers, and gastric cancer. Since the oral cavity is the entry port and the first component of the gastrointestinal system, the oral cavity has been discussed as a potential reservoir of H. pylori. Accordingly, a potential oral-oral transmission route of H. pylori raises the question concerning whether close contact such as kissing or sharing a meal can cause the transmission of H. pylori. Therefore, this topic has been investigated in many studies, applying different techniques for detection of H. pylori from oral samples, i.e. molecular techniques, immunological or biochemical methods and traditional culture techniques. While molecular, immunological or biochemical methods usually yield high detection rates, there is no definitive evidence that H. pylori has ever been isolated from the oral cavity. The specificity of those methods may be limited due to potential cross-reactivity, especially with H. pylori-like microorganisms such as Campylobacter spp. Furthermore, the influence of gastroesophageal reflux has not been investigated so far. This review aims to summarize and critically discuss previous studies investigating the potential colonization of H. pylori in the oral cavity and suggest novel research directions for targeting this critical research question.


Asunto(s)
Infecciones por Helicobacter/microbiología , Helicobacter pylori/crecimiento & desarrollo , Boca/microbiología , Animales , Infecciones Asintomáticas , Técnicas Bacteriológicas , Placa Dental/microbiología , Infecciones por Helicobacter/diagnóstico , Helicobacter pylori/citología , Helicobacter pylori/genética , Helicobacter pylori/aislamiento & purificación , Humanos , Técnicas Inmunológicas , Técnicas de Diagnóstico Molecular , Saliva/microbiología
6.
Periodontol 2000 ; 86(1): 32-56, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33690911

RESUMEN

The extracellular matrix is a critical component of microbial biofilms, such as dental plaque, maintaining the spatial arrangement of cells and coordinating cellular functions throughout the structure. The extracellular polymeric substances that comprise the matrix include carbohydrates, nucleic acids, proteins, and lipids, which are frequently organized into macromolecular complexes and/or are associated with the surfaces of microbial cells within the biofilm. Cariogenic dental plaque is rich in glucan and fructan polysaccharides derived from extracellular microbial metabolism of dietary sucrose. By contrast, the matrix of subgingival dental plaque is a complex mixture of macromolecules that is still not well understood. Components of the matrix escape from microbial cells during lysis by active secretion or through the shedding of vesicles and serve to anchor microbial cells to the tooth surface. By maintaining the biofilm in close association with host tissues, the matrix facilitates interactions between microorganisms and the host. The outcome of these interactions may be the maintenance of health or the development of dental disease, such as caries or periodontitis. The matrix affords microbial cells protection against chemical and physical insults and hinders the eradication of pathogenic dental plaque. Therefore, strategies to control the matrix are critical to maintain oral health. This review discusses recent advances in our understanding of the composition, origins, and function of the dental plaque matrix, with a focus on subgingival dental plaque. New strategies to control subgingival dental plaque based on targeting the biofilm matrix are also considered.


Asunto(s)
Caries Dental , Placa Dental , Periodontitis , Biopelículas , Matriz Extracelular de Sustancias Poliméricas , Humanos
7.
Langmuir ; 36(45): 13396-13407, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33141589

RESUMEN

The concept of slippery lubricant-infused surfaces has shown promising potential in antifouling for controlling detrimental biofilm growth. In this study, nontoxic silicone oil was either impregnated into porous surface nanostructures, referred to as liquid-infused surfaces (LIS), or diffused into a polydimethylsiloxane (PDMS) matrix, referred to as a swollen PDMS (S-PDMS), making two kinds of slippery surfaces. The slippery lubricant layers have extremely low contact angle hysteresis, and both slippery surfaces showed superior antiwetting performances with droplets bouncing off or rolling transiently after impacting the surfaces. We further demonstrated that water droplets can remove dust from the slippery surfaces, thus showing a "cleaning effect". Moreover, "coffee-ring" effects were inhibited on these slippery surfaces after droplet evaporation, and deposits could be easily removed. The clinically biofilm-forming species P. aeruginosa (as a model system) was used to further evaluate the antifouling potential of the slippery surfaces. The dried biofilm stains could still be easily removed from the slippery surfaces. Additionally, both slippery surfaces prevented around 90% of bacterial biofilm growth after 6 days compared to the unmodified control PDMS surfaces. This investigation also extended across another clinical pathogen, S. epidermidis, and showed similar results. The antiwetting and antifouling analysis in this study will facilitate the development of more efficient slippery platforms for controlling biofouling.

8.
Soft Matter ; 16(32): 7613-7623, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32728681

RESUMEN

Surface topography designed to achieve spatial segregation has shown promise in delaying bacterial attachment and biofilm growth. However, the underlying mechanisms linking surface topography to the inhibition of microbial attachment and growth still remain unclear. Here, we investigated bacterial attachment, cell alignment and biofilm formation of Pseudomonas aeruginosa on periodic nano-pillar surfaces with different pillar spacing. Using fluorescence and scanning electron microscopy, bacteria were shown to align between the nanopillars. Threadlike structures ("bacterial nanotubes") protruded from the majority of bacterial cells and appeared to link cells directly with the nanopillars. Using ΔfliM and ΔpilA mutants lacking flagella or pili, respectively, we further demonstrated that cell alignment behavior within nano-pillars is independent of the flagella or pili. The presence of bacteria nanotubes was found in all cases, and is not linked to the expression of flagella or pili. We propose that bacterial nanotubes are produced to aid in cell-surface or cell-cell connections. Nano-pillars with smaller spacing appeared to enhance the extension and elongation of bacterial nanotube networks. Therefore, nano-pillars with narrow spacing can be easily overcome by nanotubes that connect isolated bacterial aggregates. Such nanotube networks may aid cell-cell communication, thereby promoting biofilm development.


Asunto(s)
Fimbrias Bacterianas , Nanotubos , Adhesión Bacteriana , Biopelículas , Flagelos , Pseudomonas aeruginosa
9.
Biochem J ; 476(4): 699-703, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30819932

RESUMEN

The ability of opportunistic pathogens such as Group A Streptococcus (GAS) to transition between mucosal colonisation and invasive disease requires complex systems for adapting to markedly different host environments. The battle to acquire essential trace metals such as manganese and iron from the host is central to pathogenesis. Using a molecular genetic approach, Turner et al. [Biochem. J. (2019) 476, 595-611] show that it is not just individual metal concentrations that are important, but the ratio of iron to manganese within cells. Increasing this ratio by knocking out pmtA, encoding the Fe(II) exporter PmtA, or by disrupting mtsA, encoding an MtsABC Mn(II)-import system component, led to reductions in superoxide dismutase (SodA) activity and increased sensitivity to oxidative stress. The authors show that SodA is at least 4-fold more active with Mn bound than with Fe and speculate that high intracellular Fe:Mn ratios reduce superoxide dismutase activity through the mismetalation of SodA. Challenging wild-type GAS with 1 mM H2O2 led to a decrease in Fe:Mn ratio and a 3-fold increase in SodA activity, indicating that modulation of the balance between intracellular Fe and Mn may play an important role in adaptation to oxidative stress. This work unravels some of the key mechanisms for maintaining appropriate Mn and Fe concentrations within bacterial cells and underscores the need for future studies that take an holistic view to metal ion homeostasis in bacteria. Strategies aimed at interfering with the balance of intracellular metal ions represent a promising approach for the control of invasive microbial infections.


Asunto(s)
Peróxido de Hidrógeno , Manganeso , Proteínas Bacterianas , Homeostasis , Hierro , Metales , Estrés Oxidativo , Superóxido Dismutasa
10.
Langmuir ; 35(45): 14670-14680, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31630525

RESUMEN

A variety of natural surfaces exhibit antibacterial properties; as a result, significant efforts in the past decade have been dedicated toward fabrication of biomimetic surfaces that can help control biofilm growth. Examples of such surfaces include rose petals, which possess hierarchical structures like the micropapillae measuring tens of microns and nanofolds that range in the size of 700 ± 100 nm. We duplicated the natural structures on rose petal surfaces via a simple UV-curable nanocasting technique and tested the efficacy of these artificial surfaces in preventing biofilm growth using clinically relevant bacteria strains. The rose petal-structured surfaces exhibited hydrophobicity (contact angle (CA) ≈ 130.8° ± 4.3°) and high CA hysteresis (∼91.0° ± 4.9°). Water droplets on rose petal replicas evaporated following the constant contact line mode, indicating the likely coexistence of both Cassie and Wenzel states (Cassie-Baxter impregnating the wetting state). Fluorescence microscopy and image analysis revealed the significantly lower attachment of Staphylococcus epidermidis (86.1 ± 6.2% less) and Pseudomonas aeruginosa (85.9 ± 3.2% less) on the rose petal-structured surfaces, compared with flat surfaces over a period of 2 h. An extensive biofilm matrix was observed in biofilms formed by both species on flat surfaces after prolonged growth (several days), but was less apparent on rose petal-biomimetic surfaces. In addition, the biomass of S. epidermidis (63.2 ± 9.4% less) and P. aeruginosa (76.0 ± 10.0% less) biofilms were significantly reduced on the rose petal-structured surfaces, in comparison to the flat surfaces. By comparing P. aeruginosa growth on representative unitary nanopillars, we demonstrated that hierarchical structures are more effective in delaying biofilm growth. The mechanisms are two-fold: (1) the nanofolds across the hemispherical micropapillae restrict initial attachment of bacterial cells and delay the direct contact of cells via cell alignment and (2) the hemispherical micropapillae arrays isolate bacterial clusters and inhibit the formation of a fibrous network. The hierarchical features on rose petal surfaces may be useful for developing strategies to control biofilm formation in medical and industrial contexts.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Extractos Vegetales/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Rosa/química , Staphylococcus epidermidis/efectos de los fármacos , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Biopelículas/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus epidermidis/citología , Staphylococcus epidermidis/crecimiento & desarrollo , Propiedades de Superficie
11.
BMC Oral Health ; 19(1): 212, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511002

RESUMEN

BACKGROUND: This systematic scoping review aimed to identify changes in biomarkers of microbiological, immunological and biochemical origin during experimental gingivitis (EG) studies that might indicate resistance and resilience. METHODS: The term 'experimental gingivitis' was run in PubMed from inception to April 11th, 2018. From the 411 studies retrieved, 22 studies were included for this review. RESULTS: Studies reporting data on biomarker changes during and after full mouth EG trial were included. Two studies reported findings on changes in biomarkers of microbiological, 12 on immunological and eight on biochemical origin. Changes were reported in the induction phase, and occasionally in the resolution phase. The microbiological composition of both supragingival and subgingival dental plaque changed over the course of EG to a more pathogenic direction, but showed a shift back to a more normal composition. This indicates resilience of the oral microbiome. For immunological biomarkers, it was challenging to retrieve a robust pattern of changes across multiple studies. IL-1ß and IL-6 in saliva and in gingival crevicular fluid increased during induction phase and returned in the resolution phase below baseline values. The biochemical parameters cystatin-SN, cystatin-S and lactoferrin in saliva were increased at the end of induction phase, however also here no clear pattern emerged based on all available studies. CONCLUSIONS: More research is needed to investigate which microbiological, immunological, and biochemical biomarkers can be useful for future investigations into the resistance and resilience of the oral cavity to experimental gingivitis.


Asunto(s)
Placa Dental , Gingivitis , Adolescente , Adulto , Anciano , Animales , Niño , Femenino , Líquido del Surco Gingival , Humanos , Masculino , Microbiota , Índice Periodontal , Factor A de Crecimiento Endotelial Vascular , Adulto Joven
12.
Mol Microbiol ; 97(2): 281-300, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25855127

RESUMEN

Streptococcus gordonii is an oral commensal and an early coloniser of dental plaque. In vitro, S. gordonii is conditionally auxotrophic for arginine in monoculture but biosynthesises arginine when coaggregated with Actinomyces oris. Here, we investigated the arginine-responsive regulatory network of S. gordonii and the basis for conditional arginine auxotrophy. ArcB, the catabolic ornithine carbamoyltransferase involved in arginine degradation, was also essential for arginine biosynthesis. However, arcB was poorly expressed following arginine depletion, indicating that arcB levels may limit S. gordonii arginine biosynthesis. Arginine metabolism gene expression was tightly co-ordinated by three ArgR/AhrC family regulators, encoded by argR, ahrC and arcR genes. Microarray analysis revealed that > 450 genes were regulated in response to rapid shifts in arginine concentration, including many genes involved in adhesion and biofilm formation. In a microfluidic salivary biofilm model, low concentrations of arginine promoted S. gordonii growth, whereas high concentrations (> 5 mM arginine) resulted in dramatic reductions in biofilm biomass and changes to biofilm architecture. Collectively, these data indicate that arginine metabolism is tightly regulated in S. gordonii and that arginine is critical for gene regulation, cellular growth and biofilm formation. Manipulating exogenous arginine concentrations may be an attractive approach for oral biofilm control.


Asunto(s)
Arginina/metabolismo , Biopelículas/crecimiento & desarrollo , Streptococcus gordonii/fisiología , Actinomyces/metabolismo , Arginina/biosíntesis , Adhesión Bacteriana/fisiología , Datos de Secuencia Molecular , Ornitina Carbamoiltransferasa/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Streptococcus gordonii/genética , Streptococcus gordonii/crecimiento & desarrollo , Streptococcus gordonii/metabolismo
13.
BMC Bioinformatics ; 16: 9, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25591325

RESUMEN

BACKGROUND: Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity. DESCRIPTION: To facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the preliminary results showed differences in virulence genes found in Yersinia pestis and Yersinia pseudotuberculosis compared to other Yersinia species, and differences between Yersinia enterocolitica subsp. enterocolitica and Yersinia enterocolitica subsp. palearctica. CONCLUSIONS: YersiniaBase offers free access to wide range of genomic data and analysis tools for the analysis of Yersinia. YersiniaBase can be accessed at http://yersinia.um.edu.my .


Asunto(s)
Bases de Datos Genéticas , Genoma Bacteriano , Genómica/métodos , Programas Informáticos , Virulencia/genética , Yersinia/genética , Mapeo Cromosómico , Humanos , Internet , Filogenia , Motor de Búsqueda , Interfaz Usuario-Computador , Yersinia/clasificación , Yersinia/patogenicidad , Yersiniosis/microbiología
14.
Adv Appl Microbiol ; 87: 43-110, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24581389

RESUMEN

It is now clear that the most common oral diseases, dental caries and periodontitis, are caused by mixed-species communities rather than by individual pathogens working in isolation. Oral streptococci are central to these disease processes since they are frequently the first microorganisms to colonize oral surfaces and they are numerically the dominant microorganisms in the human mouth. Numerous interactions between oral streptococci and other bacteria have been documented. These are thought to be critical for the development of mixed-species oral microbial communities and for the transition from oral health to disease. Recent metagenomic studies are beginning to shed light on the co-occurrence patterns of streptococci with other oral bacteria. Refinements in microscopy techniques and biofilm models are providing detailed insights into the spatial distribution of streptococci in oral biofilms. Targeted genetic manipulation is increasingly being applied for the analysis of specific genes and networks that modulate interspecies interactions. From this work, it is clear that streptococci produce a range of extracellular factors that promote their integration into mixed-species communities and enable them to form social networks with neighboring taxa. These "community integration factors" include coaggregation-mediating adhesins and receptors, small signaling molecules such as peptides or autoinducer-2, bacteriocins, by-products of metabolism including hydrogen peroxide and lactic acid, and a range of extracellular enzymes. Here, we provide an overview of various types of community interactions between oral streptococci and other microorganisms, and we consider the possibilities for the development of new technologies to interfere with these interactions to help control oral biofilms.


Asunto(s)
Boca/microbiología , Streptococcus/fisiología , Adhesión Bacteriana , Bacteriocinas/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Ácido Láctico/metabolismo , Transducción de Señal , Streptococcus/genética
15.
Microbiol Spectr ; 12(4): e0371323, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38376204

RESUMEN

The oral microbiome plays an important role in protecting oral health. Here, we established a controlled mixed-species in vitro biofilm model and used it to assess the impact of glucose and lactate on the ability of Streptococcus mutans, an acidogenic and aciduric species, to compete with commensal oral bacteria. A chemically defined medium was developed that supported the growth of S. mutans and four common early colonizers of dental plaque: Streptococcus gordonii, Actinomyces oris, Neisseria subflava, and Veillonella parvula. Biofilms containing the early colonizers were developed in a continuous flow bioreactor, exposed to S. mutans, and incubated for up to 7 days. The abundance of bacteria was estimated by quantitative polymerase chain reaction (qPCR). At high glucose and high lactate, the pH in bulk fluid rapidly decreased to approximately 5.2, and S. mutans outgrew other species in biofilms. In low glucose and high lactate, the pH remained above 5.5, and V. parvula was the most abundant species in biofilms. By contrast, in low glucose and low lactate, the pH remained above 6.0 throughout the experiment, and the microbial community in biofilms was relatively balanced. Fluorescence in situ hybridization confirmed that all species were present in the biofilm and the majority of cells were viable using live/dead staining. These data demonstrate that carbon source concentration is critical for microbial homeostasis in model oral biofilms. Furthermore, we established an experimental system that can support the development of computational models to predict transitions to microbial dysbiosis based on metabolic interactions.IMPORTANCEWe developed a controlled (by removing host factor) dynamic system metabolically representative of early colonization of Streptococcus mutans not measurable in vivo. Hypotheses on factors influencing S. mutans colonization, such as community composition and inoculation sequence and the effect of metabolite concentrations, can be tested and used to predict the effect of interventions such as dietary modifications or the use of toothpaste or mouthwash on S. mutans colonization. The defined in vitro model (species and medium) can be simulated in an in silico model to explore more of the parameter space.


Asunto(s)
Ácido Láctico , Streptococcus mutans , Ácido Láctico/metabolismo , Hibridación Fluorescente in Situ , Glucosa/metabolismo , Biopelículas
16.
ACS Infect Dis ; 9(3): 631-642, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36826226

RESUMEN

Histatin-5 (Hst5) is a member of the histatin superfamily of cationic, His-rich, Zn(II)-binding peptides in human saliva. Hst5 displays antimicrobial activity against fungal and bacterial pathogens, often in a Zn(II)-dependent manner. In contrast, here we showed that under in vitro conditions that are characteristic of human saliva, Hst5 does not kill seven streptococcal species that normally colonize the human oral cavity and oropharynx. We further showed that Zn(II) does not influence this outcome. We then hypothesized that Hst5 exerts more subtle effects on streptococci by modulating Zn(II) availability. We initially proposed that Hst5 contributes to nutritional immunity by limiting nutrient Zn(II) availability and promoting bacterial Zn(II) starvation. By examining the interactions between Hst5 and Streptococcus pyogenes as a model Streptococcus species, we showed that Hst5 does not influence the expression of Zn(II) uptake genes. In addition, Hst5 did not suppress growth of a ΔadcAI mutant strain that is impaired in Zn(II) uptake. These observations establish that Hst5 does not promote Zn(II) starvation. Biochemical examination of purified peptides further confirmed that Hst5 binds Zn(II) with high micromolar affinities and does not compete with the AdcAI high-affinity Zn(II) uptake protein for binding nutrient Zn(II). Instead, we showed that Hst5 weakly limits the availability of excess Zn(II) and suppresses Zn(II) toxicity to a ΔczcD mutant strain that is impaired in Zn(II) efflux. Altogether, our findings led us to reconsider the function of Hst5 as a salivary antimicrobial agent and the role of Zn(II) in Hst5 function.


Asunto(s)
Péptidos Antimicrobianos , Histatinas , Proteínas y Péptidos Salivales , Humanos , Histatinas/metabolismo , Streptococcus/metabolismo , Zinc
17.
Br Dent J ; 233(7): 569-574, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36241815

RESUMEN

Infection control is critical for the safe delivery of dental care. Infection control practices must be responsive to emerging and re-emerging infectious diseases and outbreaks, as was clearly seen during the peak of the COVID-19 pandemic. An emerging global outbreak of the monkeypox virus has again raised potential challenges for infection control in dentistry. Monkeypox is an infectious disease, characterised by a rash affecting the skin and soft tissues, including the oral cavity. Previously, cases were mostly seen following contact with infected animals in Central and West Africa, with limited human-to-human transmission within and outside of these areas. However, since May 2022, sustained human-to-human transmission has occurred globally. Monkeypox can be transmitted via close contact with an infected person, contaminated objects and surfaces, or by droplets and possibly aerosols, which is therefore of potential importance to dental settings. This article discusses the relevance of monkeypox to dental professionals, the typical presentation of the disease, its potential impact on infection prevention and control practices and the delivery of dental services. The current monkeypox outbreak highlights the need for a more sustained programme of research into dental infection control that can provide a solid evidence base to underpin preparedness planning for future outbreaks and pandemics.


Asunto(s)
COVID-19 , Mpox , Animales , COVID-19/epidemiología , Odontólogos , Brotes de Enfermedades/prevención & control , Humanos , Mpox/epidemiología , Mpox/prevención & control , Monkeypox virus , Pandemias
18.
NPJ Biofilms Microbiomes ; 8(1): 96, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36509765

RESUMEN

Extracellular DNA (eDNA) is a key component of many microbial biofilms including dental plaque. However, the roles of extracellular deoxyribonuclease (DNase) enzymes within biofilms are poorly understood. Streptococcus gordonii is a pioneer colonizer of dental plaque. Here, we identified and characterised SsnA, a cell wall-associated protein responsible for extracellular DNase activity of S. gordonii. The SsnA-mediated extracellular DNase activity of S. gordonii was suppressed following growth in sugars. SsnA was purified as a recombinant protein and shown to be inactive below pH 6.5. SsnA inhibited biofilm formation by Streptococcus mutans in a pH-dependent manner. Further, SsnA inhibited the growth of oral microcosm biofilms in human saliva. However, inhibition was ameliorated by the addition of sucrose. Together, these data indicate that S. gordonii SsnA plays a key role in interspecies competition within oral biofilms. Acidification of the medium through sugar catabolism could be a strategy for cariogenic species such as S. mutans to prevent SsnA-mediated exclusion from biofilms.


Asunto(s)
Placa Dental , Streptococcus gordonii , Humanos , Streptococcus gordonii/genética , Streptococcus mutans , Biopelículas , Saliva
20.
Front Oral Health ; 2: 640129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35047995

RESUMEN

Dental plaque is the key etiological agent in caries formation and the development of the prevalent chronic oral inflammatory disease, periodontitis. The dental plaque biofilm comprises a diverse range of microbial species encased within a rich extracellular matrix, of which extracellular DNA (eDNA) has been identified as an important component. The molecular mechanisms of eDNA release and the structure of eDNA have yet to be fully characterized. Nonetheless, key functions that have been proposed for eDNA include maintaining biofilm structural integrity, initiating adhesion to dental surfaces, acting as a nutrient source, and facilitating horizontal gene transfer. Thus, eDNA is a potential therapeutic target for the management of oral disease-associated biofilm. This review aims to summarize advances in the understanding of the mechanisms of eDNA release from oral microorganisms and in the methods of eDNA detection and quantification within oral biofilms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA