Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 189(4): 1943-1960, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35604104

RESUMEN

Leaf senescence can be induced by stress or aging, sometimes in a synergistic manner. It is generally acknowledged that the ability to withstand senescence-inducing conditions can provide plants with stress resilience. Although the signaling and transcriptional networks responsible for a delayed senescence phenotype, often referred to as a functional stay-green trait, have been actively investigated, very little is known about the subsequent metabolic adjustments conferring this aptitude to survival. First, using the individually darkened leaf (IDL) experimental setup, we compared IDLs of wild-type (WT) Arabidopsis (Arabidopsis thaliana) to several stay-green contexts, that is IDLs of two functional stay-green mutant lines, oresara1-2 (ore1-2) and an allele of phytochrome-interacting factor 5 (pif5), as well as to leaves from a WT plant entirely darkened (DP). We provide compelling evidence that arginine and ornithine, which accumulate in all stay-green contexts-likely due to the lack of induction of amino acids (AAs) transport-can delay the progression of senescence by fueling the Krebs cycle or the production of polyamines (PAs). Secondly, we show that the conversion of putrescine to spermidine (SPD) is controlled in an age-dependent manner. Thirdly, we demonstrate that SPD represses senescence via interference with ethylene signaling by stabilizing the ETHYLENE BINDING FACTOR1 and 2 (EBF1/2) complex. Taken together, our results identify arginine and ornithine as central metabolites influencing the stress- and age-dependent progression of leaf senescence. We propose that the regulatory loop between the pace of the AA export and the progression of leaf senescence provides the plant with a mechanism to fine-tune the induction of cell death in leaves, which, if triggered unnecessarily, can impede nutrient remobilization and thus plant growth and survival.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arginina/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ornitina/genética , Ornitina/metabolismo , Hojas de la Planta/metabolismo , Senescencia de la Planta , Factores de Transcripción/metabolismo
2.
Plant Cell Environ ; 41(8): 1870-1885, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29744884

RESUMEN

Light and cytokinins are known to be the key players in the regulation of plant senescence. In detached leaves, the retarding effect of light on senescence is well described; however, it is not clear to what extent is this effect connected with changes in endogenous cytokinin levels. We have performed a detailed analysis of changes in endogenous content of 29 cytokinin forms in detached leaves of Arabidopsis thaliana (wild-type and 3 cytokinin receptor double mutants). Leaves were kept under different light conditions, and changes in cytokinin content were correlated with changes in chlorophyll content, efficiency of photosystem II photochemistry, and lipid peroxidation. In leaves kept in darkness, we have observed decreased content of the most abundant cytokinin free bases and ribosides, but the content of cis-zeatin increased, which indicates the role of this cytokinin in the maintenance of basal leaf viability. Our findings underscore the importance of light conditions on the content of specific cytokinins, especially N6 -(Δ2 -isopentenyl)adenine. On the basis of our results, we present a scheme summarizing the contribution of the main active forms of cytokinins, cytokinin receptors, and light to senescence regulation. We conclude that light can compensate the disrupted cytokinin signalling in detached leaves.


Asunto(s)
Arabidopsis/metabolismo , Citocininas/metabolismo , Hojas de la Planta/metabolismo , Envejecimiento/metabolismo , Envejecimiento/efectos de la radiación , Arabidopsis/efectos de la radiación , Clorofila/metabolismo , Luz , Peroxidación de Lípido , Malondialdehído/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de la radiación
3.
Plant Physiol Biochem ; 136: 43-51, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30639921

RESUMEN

Recent studies have shown that chlorophyll (Chl) b has an important role in the regulation of leaf senescence. However, there is only limited information about senescence of plants lacking Chl b and senescence-induced decrease in photosystem II (PSII) and photosystem I (PSI) function has not even been investigated in such plants. We have studied senescence-induced changes in photosynthetic pigment content and PSII and PSI activities in detached leaves of Chl b-deficient barley mutant, chlorina f2f2 (clo). After 4 days in the dark, the senescence-induced decrease in PSI activity was smaller in clo compared to WT leaves. On the contrary, the senescence-induced impairment in PSII function (estimated from Chl fluorescence parameters) was much more pronounced in clo leaves, even though the relative decrease in Chl content was similar to wild type (WT) leaves (Hordeum vulgare L., cv. Bonus). The stronger impairment of PSII function seems to be related to more pronounced damage of reaction centers of PSII. Interestingly, exogenously applied plant hormone cytokinin 6-benzylaminopurine (BA) was able to maintain PSII function in the dark senescing clo leaves to a similar extent as in WT. Thus, considering the fact that without BA the senescence-induced decrease in PSII photochemistry in clo was more pronounced than in WT, the relative protective effect of BA was higher in Chl b-deficient mutant than in WT.


Asunto(s)
Clorofila/deficiencia , Citocininas/farmacología , Hordeum/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Envejecimiento/efectos de los fármacos , Clorofila/metabolismo , Oscuridad , Hordeum/efectos de los fármacos , Hordeum/fisiología , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Complejo de Proteína del Fotosistema II/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA