Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Soft Matter ; 13(3): 677-685, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28009881

RESUMEN

Diffusion coefficients of small molecules in a model composite of spherical nanoparticles and polymer with attractive interfacial interactions are reduced from that in the pure polymer, to a degree far below the level expected from geometric tortuosity arguments. We determine whether such dramatic reductions are due to modifications to the matrix polymer free volume near the nanoparticle surface, or alternatively are due to energetic attractions between the diffusants and nanoparticle surface. We performed ethyl acetate sorption experiments within the vicinity of the polymer glass transition (Tg ≤ T ≤ Tg + 25 K) for a model polymer/nanoparticle composite, silica-filled poly(methyl acrylate). By application of the Vrentas-Duda free volume theory of diffusion we have decoupled the energetic effects from those related to free-volume and segmental dynamics. While the latter is unaffected by addition of nanoparticles, the energy needed for the ethyl acetate diffusant to overcome neighboring attractive forces doubles after adding 40 vol% nanoparticles with a diameter of 14 nm. This is qualitatively consistent with hydrogen bonding interactions between the silica surface and ethyl acetate slowing its rate of diffusion. On the other hand for benzene, which does not hydrogen bond to the silica surface, diffusion coefficients that can be explained by tortuosity effects were obtained. This work provides quantitative evidence that the diffusant-filler energetic interactions and geometric blocking effects can be fully responsible for the substantially reduced diffusivity commonly observed in polymer/nanoparticle composite systems.

2.
Langmuir ; 32(27): 6940-7, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27351974

RESUMEN

Versatile and spatiotemporally controlled methods for decorating surfaces with monolayers of attached polymers are broadly impactful to many technological applications. However, current materials are usually designed for very specific polymer/surface chemistries and, as a consequence, are not very broadly applicable and/or do not rapidly respond to high-resolution stimuli such as light. We describe here the use of a polymeric adhesion layer, poly(styrene sulfonyl azide-alt-maleic anhydride) (PSSMA), which is capable of immobilizing a 1-7 nm thick monolayer of preformed, inert polymers via photochemical grafting reactions. Solubility of PSSMA in very polar solvents enables processing alongside hydrophobic polymers or solutions and by extension orthogonal spin-coating deposition strategies. Therefore, these materials and processes are fully compatible with photolithographic tools and can take advantage of the immense manufacturing scalability they afford. For example, the thicknesses of covalently grafted poly(styrene) obtained after seconds of exposure are quantitatively equivalent to those obtained by physical adsorption after hours of thermal equilibration. Sequential polymer grafting steps using photomasks were used to pattern different regions of surface energy on the same substrate. These patterns spatially controlled the self-assembled domain orientation of a block copolymer possessing 21 nm half-periodicity, demonstrating hierarchical synergy with leading-edge nanopatterning approaches.


Asunto(s)
Membrana Dobles de Lípidos/química , Maleatos/química , Procesos Fotoquímicos , Poliestirenos/química , Marcadores de Spin
3.
Soft Matter ; 10(40): 8043-50, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25160514

RESUMEN

A Marangoni flow is shown to occur when a polymer film possessing a spatially-defined surface energy pattern is heated above its glass transition to the liquid state. This can be harnessed to rapidly manufacture polymer films possessing prescribed height profiles. To quantify and verify this phenomenon, a model is described here which accurately predicts the formation, growth, and eventual dissipation of topographical features. The model predictions, based on numerical solutions of equations governing thin film dynamics with a Marangoni stress, are quantitatively compared to experimental measurements of thin polystyrene films containing photochemically patterned surface energy gradients. Good agreement between the model and the data is achieved at temperatures between 120 and 140 °C for a comprehensive range of heating times using reasonable physical properties as parameter inputs. For example, thickness variations that measure 102% of the starting film thickness are achieved in only 12 minutes of heating at 140 °C, values that are predicted by the model are within 6% and 3 min, respectively. The photochemical pattern that directed this flow possessed only a 0.2 dyne cm(-1) variation in surface tension between exposed and unexposed regions. The physical insights from the validated model suggest promising strategies to maximize the aspect ratio of the topographical features and minimize the processing time necessary to develop them.

4.
J Biomed Mater Res B Appl Biomater ; 106(6): 2393-2402, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29178263

RESUMEN

Liners used in orthopedic devices are often made from ultrahigh molecular weight polyethylene (UHMWPE). A general predictive capability for transport coefficients of small molecules in UHMWPE does not exist, making it difficult to assess properties associated with leaching or uptake of small molecules. To address this gap, we describe here how a form of the Vrentas-Duda free volume model can be used to predict upper-bound diffusion coefficients (D) of arbitrary molecules within UHMWPE on the basis of their size and shape. Within this framework, the free-volume microstructure of UHMWPE is defined by analysis of a curated set of model diffusants. We determined an upper limit on D for vitamin E, a common antioxidant added to UHMWPE, to be 7.1 × 10-12 cm2  s-1 . This means that a liner that contains 0.1 wt % or less Vitamin E and has <120 cm2 patient contacting surface area would elute <100 µg/day of vitamin E. Additionally, the model predicts that squalene and cholesterol-two pro-oxidizing biological compounds-do not penetrate over 820 µm into UHMWPE liners over the course of 5 years because their D is ≤7.1 × 10-12 cm2  s-1 . © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2393-2402, 2018.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Prótesis de Cadera , Ensayo de Materiales , Polietilenos/química , Humanos
5.
J Biomed Mater Res B Appl Biomater ; 106(1): 310-319, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28140510

RESUMEN

Many polymeric medical device materials contain color additives which could lead to adverse health effects. The potential health risk of color additives may be assessed by comparing the amount of color additive released over time to levels deemed to be safe based on available toxicity data. We propose a conservative model for exposure that requires only the diffusion coefficient of the additive in the polymer matrix, D, to be specified. The model is applied here using a model polymer (poly(ether-block-amide), PEBAX 2533) and color additive (quinizarin blue) system. Sorption experiments performed in an aqueous dispersion of quinizarin blue (QB) into neat PEBAX yielded a diffusivity D = 4.8 × 10-10 cm2  s-1 , and solubility S = 0.32 wt %. On the basis of these measurements, we validated the model by comparing predictions to the leaching profile of QB from a PEBAX matrix into physiologically representative media. Toxicity data are not available to estimate a safe level of exposure to QB, as a result, we used a Threshold of Toxicological Concern (TTC) value for QB of 90 µg/adult/day. Because only 30% of the QB is released in the first day of leaching for our film thickness and calculated D, we demonstrate that a device may contain significantly more color additive than the TTC value without giving rise to a toxicological concern. The findings suggest that an initial screening-level risk assessment of color additives and other potentially toxic compounds found in device polymers can be improved. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 310-319, 2018.


Asunto(s)
Antraquinonas , Colorantes , Modelos Químicos , Nylons/química , Antraquinonas/química , Antraquinonas/farmacocinética , Colorantes/química , Colorantes/farmacocinética , Medición de Riesgo
6.
Ann Biomed Eng ; 46(1): 14-24, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28948381

RESUMEN

A novel approach for rapid risk assessment of targeted leachables in medical device polymers is proposed and validated. Risk evaluation involves understanding the potential of these additives to migrate out of the polymer, and comparing their exposure to a toxicological threshold value. In this study, we propose that a simple diffusive transport model can be used to provide conservative exposure estimates for phase separated color additives in device polymers. This model has been illustrated using a representative phthalocyanine color additive (manganese phthalocyanine, MnPC) and polymer (PEBAX 2533) system. Sorption experiments of MnPC into PEBAX were conducted in order to experimentally determine the diffusion coefficient, D = (1.6 ± 0.5) × 10-11 cm2/s, and matrix solubility limit, C s = 0.089 wt.%, and model predicted exposure values were validated by extraction experiments. Exposure values for the color additive were compared to a toxicological threshold for a sample risk assessment. Results from this study indicate that a diffusion model-based approach to predict exposure has considerable potential for use as a rapid, screening-level tool to assess the risk of color additives and other small molecule additives in medical device polymers.


Asunto(s)
Colorantes/química , Modelos Teóricos , Polímeros/química , Seguridad de Productos para el Consumidor , Difusión , Equipos y Suministros , Indoles/química , Isoindoles , Medición de Riesgo
7.
ACS Appl Mater Interfaces ; 8(11): 7456-63, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26942554

RESUMEN

Nature has engineered universal, catechol-containing adhesives which can be synthetically mimicked in the form of polydopamine (PDA). In this study, PDA was exploited to enable the formation of block copolymer (BCP) nanopatterns on a variety of soft material surfaces. While conventional PDA coating times (1 h) produce a layer too rough for most applications of BCP nanopatterning, we found that these substrates could be polished by bath sonication in a weakly basic solution to form a conformal, smooth (root-mean-square roughness ∼0.4 nm), and thin (3 nm) layer free of large prominent granules. This chemically functionalized, biomimetic layer served as a reactive platform for subsequently grafting a surface neutral layer of poly(styrene-random-methyl methacrylate-random-glycidyl methacrylate) to perpendicularly orient lamellae-forming poly(styrene-block-methyl methacrylate) BCP. Moreover, scanning electron microscopy observations confirmed that a BCP nanopattern on a poly(ethylene terephthalate) substrate was not affected by bending with a radius of ∼0.5 cm. This procedure enables nondestructive, plasma-free surface modification of chemically inert, low-surface energy soft materials, thus overcoming many current chemical and physical limitations that may impede high-throughput, roll-to-roll nanomanufacturing.

8.
ACS Macro Lett ; 3(9): 839-844, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35596370

RESUMEN

Self-assembly characteristics of amphiphilic macromolecules into micelles, nanoparticles and vesicles has been of fundamental interest for many applications including designed nanoscale therapeutic delivery systems and enzymatic reactors. In this work, a class of amphiphilic block oligomers was synthesized from naturally occurring oligosaccharides and aliphatic alcohol precursors, which are all currently prominent in the pharmaceutical, food, and supplement industries. These block oligomer materials were synthesized by functionalization of the precursor materials followed by subsequent coupling by azide-alkyne cycloaddition and their bulk self-assembly was investigated after solvent vapor annealing. Self-assembly of the amphiphilic materials into liposomes in aqueous solution was also investigated after preparing solutions using a nanoprecipitation method. Encapsulation of hydrophobic components was demonstrated and verified using dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy experiments.

9.
ACS Macro Lett ; 3(8): 824-828, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590708

RESUMEN

Directly photopatternable interfaces are introduced that facilitate two-dimensional spatial control of block copolymer (BCP) orientation in thin films. Copolymers containing an acid labile monomer were synthesized, formulated with a photoacid generator (PAG), and coated to create grafted surface treatments (GSTs). These as-cast GST films are either inherently neutral or preferential (but not both) to lamella-forming poly(styrene-block-trimethylsilylstyrene) (PS-b-PTMSS). Subsequent contact printing and baking produced GSTs with submicron chemically patterned gratings. The catalytic reaction of the photoacid generated in the UV-exposed regions of the GSTs changed the interfacial interactions between the BCP and the GST in one of two ways: from neutral to preferential ("N2P") or preferential to neutral ("P2N"). When PS-b-PTMSS was thermally annealed between a chemically patterned GST and a top coat, alternating regions of perpendicular and parallel BCP lamellae were formed.

10.
ACS Macro Lett ; 1(9): 1138-1142, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-35607185

RESUMEN

Thiol-ene chemistry was harnessed to enable production of thermochemically stable thermoset fibers containing 50-87 wt % acrylated epoxidized soybean oil and 49-72% biobased carbon without using solvent or heat. In this demonstration, the fibers were made by simultaneous electrospinning and photocuring of a liquid monomer mixture, which could be translated to other fiber manufacturing processes such as melt blowing or Forcespinning. Scanning electron micrographs illustrate the fiber quality and an average diameter of about 30 µm. Photochemical conversion kinetics of functional groups during light exposure were measured by real-time Fourier transform infrared spectroscopy, providing insight into the advantages of using high-functionality monomers and thiol-ene chemistry in this application.

11.
ACS Macro Lett ; 1(10): 1150-1154, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-35607202

RESUMEN

Polystyrene (PS) that has been exposed to ultraviolet light (UV) undergoes partial dehydrogenation of the alkane polymer backbone which increases its surface energy. Exploiting this photochemistry, we exposed polystyrene films to UV light using a photomask to induce a patterned photochemical reaction producing regions in the film with differing surface energy. Upon heating the solid polymer film with the preprogrammed surface energy pattern to a liquid state, the polymer flows from the low surface energy unexposed regions to high surface energy exposed regions. This flow creates three-dimensional topography by the Marangoni Effect, which describes convective mass transfer due to surface energy gradients. The topographical features can be permanently preserved by quenching the film below its glass to liquid transition temperature. Their shape and organization are only limited by the pattern on the photomask.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA