Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Vet Res ; 20(1): 275, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38918814

RESUMEN

Transgene silencing provides a significant challenge in animal model production via gene engineering using viral vectors or transposons. Selecting an appropriate strategy, contingent upon the species is crucial to circumvent transgene silencing, necessitating long-term observation of in vivo gene expression. This study employed the PiggyBac transposon to create a GFP rat model to address transgene silencing in rats. Surprisingly, transgene silencing occurred while using the CAG promoter, contrary to conventional understanding, whereas the Ef1α promoter prevented silencing. GFP expression remained stable through over five generations, confirming efficacy of the Ef1α promoter for long-term protein expression in rats. Additionally, GFP expression was consistently maintained at the cellular level in various cellular sources produced from the GFP rats, thereby validating the in vitro GFP expression of GFP rats. Whole-genome sequencing identified a stable integration site in Akap1 between exons 1 and 2, mitigating sequence-independent mechanism-mediated transgene silencing. This study established an efficient method for producing transgenic rat models using PiggyBac transposon. Our GFP rats represent the first model to exhibit prolonged expression of foreign genes over five generations, with implications for future research in gene-engineered rat models.


Asunto(s)
Elementos Transponibles de ADN , Proteínas Fluorescentes Verdes , Ratas Transgénicas , Animales , Elementos Transponibles de ADN/genética , Proteínas Fluorescentes Verdes/genética , Ratas , Técnicas de Transferencia de Gen/veterinaria , Transgenes , Masculino , Silenciador del Gen , Femenino , Regiones Promotoras Genéticas
2.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38396979

RESUMEN

Gallic acid (GA), a phenolic compound naturally found in many plants, exhibits potential preventive and therapeutic roles. However, the underlying molecular mechanisms of its diverse biological activities remain unclear. Here, we investigated possible mechanisms of GA function through a transcriptome-based analysis using LINCS L1000, a publicly available data resource. We compared the changes in the gene expression profiles induced by GA with those induced by FDA-approved drugs in three cancer cell lines (A549, PC3, and MCF7). The top 10 drugs exhibiting high similarity with GA in their expression patterns were identified by calculating the connectivity score in the three cell lines. We specified the known target proteins of these drugs, which could be potential targets of GA, and identified 19 potential targets. Next, we retrieved evidence in the literature that GA likely binds directly to DNA polymerase ß and ribonucleoside-diphosphate reductase. Although our results align with previous studies suggesting a direct and/or indirect connection between GA and the target proteins, further experimental investigations are required to fully understand the exact molecular mechanisms of GA. Our study provides insights into the therapeutic mechanisms of GA, introducing a new approach to characterizing therapeutic natural compounds using transcriptome-based analyses.


Asunto(s)
Neoplasias , Transcriptoma , Humanos , Ácido Gálico/farmacología , Ácido Gálico/metabolismo , Perfilación de la Expresión Génica
3.
Anim Biotechnol ; 34(9): 4730-4735, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36905152

RESUMEN

Gene integration at site-specific loci is a critical approach for understanding the function of a gene in cells or animals. The AAVS1 locus is a well-known safe harbor for human and mouse studies. In this study, we found an AAVS1-like sequence (pAAVS1) in the porcine genome using the Genome Browser and designed TALEN and CRISPR/Cas9 to target the pAAVS1. The efficiency of CRISPR/Cas9 in porcine cells was superior to that of TALEN. We added a loxP-lox2272 sequences to the pAAVS1 targeting donor vector containing GFP for further exchange of various transgenes via recombinase-mediated cassette exchange (RMCE). The donor vector and CRISPR/Cas9 components were transfected into porcine fibroblasts. Targeted cells of CRISPR/Cas9-mediated homologous recombination were identified by antibiotic selection. Gene knock-in was confirmed by PCR. To induce RMCE, another donor vector containing the loxP-lox2272 and inducible Cre recombinase was cloned. The Cre-donor vector was transfected into the pAAVS1 targeted cell line, and RMCE was induced by adding doxycycline to the culture medium. RMCE in porcine fibroblasts was confirmed using PCR. In conclusion, gene targeting at the pAAVS1 and RMCE in porcine fibroblasts was successful. This technology will be useful for future porcine transgenesis studies and the generation of stable transgenic pigs.


Asunto(s)
Sistemas CRISPR-Cas , Recombinasas , Animales , Porcinos/genética , Humanos , Ratones , Recombinasas/genética , Recombinasas/metabolismo , Sistemas CRISPR-Cas/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Animales Modificados Genéticamente/metabolismo , Marcación de Gen
4.
BMC Vet Res ; 18(1): 156, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477562

RESUMEN

BACKGROUND: Several DNA transposons including PiggyBac (PB), Sleeping Beauty (SB), and Tol2 have been applied as effective means for of transgenesis in many species. Cattle are not typically experimental animals, and relatively little verification has been presented on this species. Thus, the goal here was to determine the applicability of three transposon systems in somatic and embryo cells in cattle, while also investigating which of the three systems is appropriate for each cell type. Green fluorescent protein (GFP)-expressing transposon systems were used for electroporation and microinjection in the somatic cells and embryo stage, respectively. After transfection, the GFP-positive cells or blastocysts were observed through fluorescence, while the transfection efficiency was calculated by FACS. RESULTS: In bovine somatic cells, the PB (63.97 ± 11.56) showed the highest efficiency of the three systems (SB: 50.74 ± 13.02 and Tol2: 16.55 ± 5.96). Conversely, Tol2 (75.00%) and SB (70.00%) presented a higher tendency in the embryonic cells compared to PB (42.86%). CONCLUSIONS: These results demonstrate that these three transposon systems can be used in bovine somatic cells and embryos as gene engineering experimental methods. Moreover, they demonstrate which type of transposon system to apply depending on the cell type.


Asunto(s)
Elementos Transponibles de ADN , Técnicas de Transferencia de Gen , Animales , Bovinos/genética , Elementos Transponibles de ADN/genética , Técnicas de Transferencia de Gen/veterinaria , Células Germinativas , Transfección/veterinaria
5.
BMC Vet Res ; 17(1): 44, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482811

RESUMEN

BACKGROUND: Murine is the most abundantly used as laboratory animal models. There has been a tremendous amount of research including; their evolution, growth, physiology, disease modeling as well as genomic mapping. Rats and mice are the most widely used among them. Although both rats and mice fall under the same category still both are different a lot too. As regarding in vitro maturation and development mouse studies are well established as compared to rats which still lies in the early phase of development. So, we tried to figure out rat oocytes in vitro maturation and their developmental potential by performing 3 experiments i.e. superovulation, in vitro Maturation as simple culture (COC's only), and COC's & cumulus cells co-culture, which later further developed using parthenogenetic activation after IVM. Female Sprague Dawley rat 3-4 week used for these studies, we hyper-stimulated their ovaries using PMSG and hCG 150 IU/kg each. After that, we collected ovaries via dissection and retrieved oocytes. We matured them in TCM 199 supplemented with FSH, Estrogen, EGF, and Pyruvate. After maturation, we activated them using two types of activators i.e. Ethanol 7%, Ionomycin. After that, we saw and compared their developmental potential in vitro. RESULTS: Oocytes matured in COC's and Cumulus cell monolayer co-culture (59% ± 4*) showed significantly more even growth and extrusion of the first polar body as compared to the COC's only culture (53.8 ± 7%*). While oocytes activated using Ionomycin showed more promising development until 8 cells/blastocyst level compared to ethanol 7%. CONCLUSION: we concluded that COC's and cumulus monolayer co-culture is better than COC's only culture. Cumulus monolayer provides extra aid in the absorption of nutrients and supplements thus providing a better environment for oocytes growth. Also, we concluded that matured oocytes showed more developmental capacity after activation via ionomycin compared to ethanol.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/fisiología , Animales , Técnicas de Cocultivo/métodos , Técnicas de Cocultivo/veterinaria , Medios de Cultivo , Células del Cúmulo/citología , Células del Cúmulo/fisiología , Etanol/farmacología , Femenino , Técnicas de Maduración In Vitro de los Oocitos/métodos , Ionomicina/farmacología , Oocitos/citología , Oocitos/efectos de los fármacos , Partenogénesis , Ratas Sprague-Dawley
6.
BMC Genomics ; 19(1): 387, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29792157

RESUMEN

BACKGROUND: Transposon-mediated, non-viral gene delivery is a powerful tool for generating stable cell lines and transgenic animals. However, as multi-copy insertion is the preferred integration pattern, there is the potential for uncontrolled changes in endogenous gene expression and detrimental effects in cells or animals. Our group has previously reported on the generation of several transgenic cattle by using microinjection of the Sleeping Beauty (SB) and PiggyBac (PB) transposons and seeks to explore the long-term effects of this technology on cattle. RESULTS: Transgenic cattle, one female (SNU-SB-1) and one male (SNU-PB-1), reached over 36 months of age with no significant health issues and normal blood parameters. The detection of transgene integration and fluorescent signal in oocytes and sperm suggested the capacity for germline transmission in both of the founder animals. After natural breeding, the founder transgenic cow delivered a male calf and secreted milk containing fluorescent transgenic proteins. The calf expressed green fluorescent protein in primary cells from ear skin, with no significant change in overall genomic stability and blood parameters. Three sites of transgene integration were identified by next-generation sequencing of the calf's genome. CONCLUSIONS: Overall, these data demonstrate that transposon-mediated transgenesis can be applied to cattle without being detrimental to their long-term genomic stability or general health. We further suggest that this technology may be usefully applied in other fields, such as the generation of transgenic animal models.


Asunto(s)
Técnicas de Transferencia de Gen , Salud , Óvulo/metabolismo , Espermatozoides/metabolismo , Transposasas/genética , Animales , Animales Modificados Genéticamente , Bovinos , Femenino , Masculino , Transgenes/genética , Secuenciación Completa del Genoma
7.
Mol Ther ; 24(9): 1644-54, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27434585

RESUMEN

Mesenchymal stem cells (MSCs) promote therapeutic angiogenesis to cure serious vascular disorders. However, their survival period and cytokine-secretory capacity are limited. Although hepatocyte growth factor (HGF) can accelerate the rate of angiogenesis, recombinant HGF is limited because of its very short half-life (<3-5 minutes). Thus, continuous treatment with HGF is required to obtain an effective therapeutic response. To overcome these limitations, we produced genome-edited MSCs that secreted HGF upon drug-specific induction. The inducible HGF expression cassette was integrated into a safe harbor site in an MSC chromosome using the TALEN system, resulting in the production of TetOn-HGF/human umbilical cord blood-derived (hUCB)-MSCs. Functional assessment of the TetOn-HGF/hUCB-MSCs showed that they had enhanced mobility upon the induction of HGF expression. Moreover, long-term exposure by doxycycline (Dox)-treated TetOn-HGF/hUCB-MSCs enhanced the anti-apoptotic responses of genome-edited MSCs subjected to oxidative stress and improved the tube-formation ability. Furthermore, TetOn-HGF/hUCB-MSCs encapsulated by arginine-glycine-aspartic acid (RGD)-alginate microgel induced to express HGF improved in vivo angiogenesis in a mouse hindlimb ischemia model. This study showed that the inducible HGF-expressing hUCB-MSCs are competent to continuously express and secrete HGF in a controlled manner. Thus, the MSCs that express HGF in an inducible manner are a useful therapeutic modality for the treatment of vascular diseases requiring angiogenesis.

8.
BMC Vet Res ; 13(1): 156, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28576146

RESUMEN

BACKGROUND: Persistent Müllerian duct syndrome (PMDS), a rare form of male pseudohermaphroditism in dogs, is an abnormal sexual phenotype in males that is characterized by the existence of a hypoplastic oviduct, uterus, and cranial part of the vagina. Dogs suffering from PMDS are often accompanied by cryptorchidism. To date, it has been mainly found in the Miniature Schnauzer breed. CASE PRESENTATION: In this report, two cases of PMDS with a malignant testicular tumor originating from cryptorchidism in breeds other than the Miniature Schnauzer breed are described. The patients were a seven-year-old male Maltese dog and a 17-year-old male mixed-breed dog weighing 3.8 kg. They also exhibited an enlarged prostate with or without abscess and an elevated serum estradiol level and were surgically treated to remove the testicular tumor and Müllerian duct derivatives. CONCLUSIONS: It is recommended that PMDS should be differentially diagnosed by ultrasonography and that orchiectomy be performed at an early age in patients suspected to have cryptorchidism to prevent the ectopic testes from becoming tumorous.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY/veterinaria , Enfermedades de los Perros , Neoplasias Testiculares/veterinaria , Animales , Criptorquidismo/complicaciones , Criptorquidismo/diagnóstico por imagen , Criptorquidismo/veterinaria , Trastorno del Desarrollo Sexual 46,XY/complicaciones , Trastorno del Desarrollo Sexual 46,XY/diagnóstico por imagen , Enfermedades de los Perros/diagnóstico por imagen , Perros , Masculino , Neoplasias Testiculares/complicaciones , Neoplasias Testiculares/diagnóstico por imagen , Ultrasonografía
10.
Zygote ; 23(6): 916-23, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25424059

RESUMEN

Genome-editing technologies are considered to be an important tool for generating gene knockout cattle models. Here, we report highly efficient disruption of a chromosomally integrated eGFP gene in bovine somatic cells using RNA-guided endonucleases, a new class of programmable nucleases developed from a bacterial Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system. In the present study, we obtained homogenously eGFP-expressing primary fibroblasts from cloned bovine transgenic embryonic tissues and employed them for further analysis. CRISPR/Cas9 plasmids specifically targeting the eGFP gene were transfected into the eGFP fibroblasts by electroporation. After 10 days of culture, more than 40% of the cells had lost eGFP expression in fluorescence activated cell sorting (FACS) analysis. Targeted sequences of the transfected cells were analyzed, and various small indel mutations (6-203 bp deletions) in the target sequence were found. The fibroblasts mutated with the CRISPR/Cas9 system were applied for somatic cell nuclear transfer, and the reconstructed embryos were successfully developed into the blastocyst stage. In conclusion, the CRISPR/Cas9 system was successfully utilized in bovine cells and cloned embryos. This will be a useful technique to develop livestock transgenesis for agricultural science.


Asunto(s)
Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes/métodos , Proteínas Fluorescentes Verdes/genética , Animales , Blastocisto/fisiología , Bovinos , Células Cultivadas , Endonucleasas/genética , Femenino , Fibroblastos , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Técnicas de Transferencia Nuclear , Embarazo , ARN Guía de Kinetoplastida
11.
Zygote ; 23(5): 704-11, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25181424

RESUMEN

Octamer-binding transcription factor 4 (Oct4) is a critical molecule for the self-renewal and pluripotency of embryonic stem cells. Recent reports have shown that Oct4 also controls cell-cycle progression and enhances the proliferation of various types of cells. As the high proliferation of donor fibroblasts is critical to the production of transgenic pigs, using the somatic cell nuclear transfer technique, we analysed the effect of Oct4 overexpression on the proliferation of porcine fibroblasts and embryos. Porcine endogenous Oct4 cDNA was cloned, sequenced and inserted into an expression vector. The vector was transfected into porcine fibroblasts, and a stable Oct4-overexpressed cell line was established by antibiotic selection. Oct4 expression was validated by the immunostaining of Oct4. Cell morphology was changed to sharp, and both proliferation and migration abilities were enhanced in Oct4-overexpressed cells. Real-time RT-PCR results showed that p16, Bcl2 and Myc were upregulated in Oct4-overexpressed cells. Somatic cell nuclear transfer was performed using Oct4-overexpressed cells, and the development of Oct4 embryos was compared with that of wild-type cloned embryos. The cleavage and blastocyst formation rates were improved in the Oct4 embryos. Interestingly, blastocyst formation of the Oct4 embryos was observed as early as day 5 in culture, while blastocysts were observed from day 6 in wild-type cloned embryos. In conclusion, the overexpression of Oct4 enhanced the proliferation of both porcine fibroblasts and embryos.


Asunto(s)
Blastocisto/citología , Proliferación Celular , Clonación de Organismos/métodos , Embrión de Mamíferos/citología , Fibroblastos/citología , Regulación del Desarrollo de la Expresión Génica , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Animales Recién Nacidos , Blastocisto/metabolismo , Células Cultivadas , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Fibroblastos/metabolismo , Técnicas para Inmunoenzimas , Técnicas de Transferencia Nuclear , Factor 3 de Transcripción de Unión a Octámeros/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/citología , Piel/metabolismo , Porcinos
12.
Transgenic Res ; 23(3): 407-19, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24497084

RESUMEN

Generation of transgenic pigs for xenotransplantation is one of the most promising technologies for resolving organ shortages. Human heme oxygenase-1 (hHO-1/HMOX1) can protect transplanted organs by its strong anti-oxidative, anti-apoptotic, and anti-inflammatory effects. Soluble human TNFRI-Fc (shTNFRI-Fc) can inhibit the binding of human TNF-α (hTNF-α) to TNF receptors on porcine cells, and thereby, prevent hTNF-α-mediated inflammation and apoptosis. Herein, we successfully generated shTNFRI-Fc-F2A-HA-hHO-1 transgenic (TG) pigs expressing both shTNFRI-Fc and hemagglutinin-tagged-human heme oxygenase-1 (HA-hHO-1) by using an F2A self-cleaving peptide. shTNFRI-Fc and HA-hHO-1 transgenes containing the F2A peptide were constructed under the control of the CAG promoter. Transgene insertion and copy number in the genome of transgenic pigs was confirmed by polymerase chain reaction (PCR) and Southern blot analysis. Expressions of shTNFRI-Fc and HA-hHO-1 in TG pigs were confirmed using PCR, RT-PCR, western blot, ELISA, and immunohistochemistry. shTNFRI-Fc and HA-hHO-1 were expressed in various organs, including the heart, lung, and spleen. ELISA assays detected shTNFRI-Fc in the sera of TG pigs. For functional analysis, fibroblasts isolated from a shTNFRI-Fc-F2A-HA-hHO-1 TG pig (i.e., #14; 1 × 10(5) cells) were cultured with hTNF-α (20 ng/mL) and cycloheximide (10 µg/mL). The viability of shTNFRI-Fc-F2A-HA-hHO-1 TG pig fibroblasts was significantly higher than that of the wild type (wild type vs. shTNFRI-Fc-F2A-HA-hHO-1 TG at 24 h, 31.6 ± 3.2 vs. 60.4 ± 8.3 %, respectively; p < 0.05). Caspase-3/-7 activity of the shTNFRI-Fc-F2A-HA-hHO-1 TG pig fibroblasts was lower than that of the wild type pig fibroblasts (wild type vs. shTNFRI-Fc-F2A-HA-hHO-1 TG at 12 h, 812,452 ± 113,078 RLU vs. 88,240 ± 10,438 RLU, respectively; p < 0.05). These results show that shTNFRI-Fc and HA-hHO-1 TG pigs generated by the F2A self-cleaving peptide express both shTNFRI-Fc and HA-hHO-1 molecules, which provides protection against oxidative and inflammatory injury. Utilization of the F2A self-cleaving peptide is a promising tool for generating multiple TG pigs for xenotransplantation.


Asunto(s)
Animales Modificados Genéticamente , Hemo-Oxigenasa 1/biosíntesis , Péptidos/genética , Receptores Tipo I de Factores de Necrosis Tumoral/biosíntesis , Animales , Apoptosis/genética , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Hemo-Oxigenasa 1/genética , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Sus scrofa , Porcinos/genética
13.
Cell Biol Int ; 38(10): 1163-73, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24797505

RESUMEN

Enhancing the proliferative capacity of mesenchymal stem cells (MSCs) is critical for increasing their therapeutic potential in a variety of diseases. We hypothesized that lentivirus-mediated overexpression of canine octamer-binding transcription factor 4 (OCT4) might influence the proliferation of canine adipose tissue-derived MSCs (cATMSCs). cOCT4-cATMSCs were generated by transducing cATMSCs with a cOCT4-lentiviral vector. Increased expression of cOCT4 was confirmed using RT-PCR and immunoblotting. Immunophenotypic characterization using flow cytometry indicated that the CD29, CD44, CD73, CD90, and CD105 surface markers were highly expressed by both cOCT4- and mock-transduced cATMSCs (mock-cATMSCs), whereas the CD31 and CD45 markers were absent. We performed the osteogenic differentiation assay to evaluate the effects of cOCT4 overexpression on the osteogenic differentiation potential of cATMSCs. The results showed that cOCT4-cATMSCs had a much higher potential for osteogenic differentiation than mock-cATMSCs. Next, the proliferative capacities of cOCT4- and mock-cATMSCs were evaluated using a WST-1 cell proliferation assay and trypan blue exclusion. cOCT4-cATMSCs showed a higher proliferative capacity than mock-cATMSCs. Cell cycle analysis indicated that overexpression of cOCT4 in cATMSCs induced an increase in the proportion of cells in S and G2/M phases. Consistent with this, immunoblot analysis showed that cyclin D1 expression was increased in cOCT4-cATMSCs. In conclusion, our results indicate that lentivirus-mediated overexpression of cOCT4 increased the proliferative capacity of cATMSCs. OCT4-mediated enhancement of cell proliferation may be a useful method for expanding MSC population rapidly without loss of stemness.


Asunto(s)
Tejido Adiposo/citología , Células Madre Mesenquimatosas/citología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Tejido Adiposo/metabolismo , Animales , Antígenos CD/metabolismo , Diferenciación Celular , Proliferación Celular/genética , Células Cultivadas , Ciclina D1/metabolismo , Perros , Fase G2 , Vectores Genéticos/metabolismo , Lentivirus/genética , Células Madre Mesenquimatosas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Osteogénesis , Fase S
14.
Zygote ; 22(2): 286-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23442979

RESUMEN

The presence of glutamine (Gln) in in vitro maturation (IVM) and in vitro culture (IVC) medium is a more potent factor for improving porcine oocyte and embryo development than other amino acids. However Gln is inherently unstable and spontaneously breaks down into ammonia, and therefore interferes with proper development. To avoid this adverse effect, Gln was replaced in the present study with its stable dipeptide derivative alanyl-glutamine (Ala-Gln) and the effects of this replacement on porcine IVM and IVC were evaluated. Replacement of Gln with Ala-Gln during IVM did not improve nuclear maturation, however numbers of early cleaved embryos were significantly increased after activation. Blastocyst formation rates were also significantly improved by using Ala-Gln during IVM. Replacement of Gln with Ala-Gln during IVC significantly increased total cell numbers in blastocysts. Blastocyst formation rate was also significantly higher when Ala-Gln was used in both IVM and IVC. In conclusion, the use of Ala-Gln rather than Gln gives better results for development in both porcine IVM and IVC.


Asunto(s)
Blastocisto/citología , Dipéptidos/farmacología , Desarrollo Embrionario/efectos de los fármacos , Fertilización In Vitro , Glutamina/farmacología , Oocitos/citología , Animales , Blastocisto/efectos de los fármacos , Blastocisto/fisiología , Células Cultivadas , Fase de Segmentación del Huevo , Técnicas de Cultivo de Embriones , Femenino , Técnicas In Vitro , Oocitos/efectos de los fármacos , Oocitos/fisiología , Porcinos
15.
Asian-Australas J Anim Sci ; 27(3): 324-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25049958

RESUMEN

To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells (RFP(+)/eGFP(+)) were selected and used for somatic cell nuclear transfer. Two types of reporter based enrichment systems were used in this study; the cloned embryos derived from cells enriched using a magnetic sorting-based system showed better developmental competence than did those derived from cells enriched by flow cytometry. Mutated sequences, such as insertions, deletions, or substitutions, together with the wild-type sequence, were found in the cloned porcine blastocysts. Therefore, genetic mutations can be achieved in cloned porcine embryos reconstructed with ZFN-treated cells that were enriched by a reporter-based system.

16.
J Vet Sci ; 25(1): e10, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38311323

RESUMEN

In livestock industry, there is growing interest in methods to increase the production efficiency of livestock to address food shortages, given the increasing global population. With the advancements in gene engineering technology, it is a valuable tool and has been intensively utilized in research specifically focused on human disease. In historically, this technology has been used with livestock to create human disease models or to produce recombinant proteins from their byproducts. However, in recent years, utilizing gene editing technology, cattle with identified genes related to productivity can be edited, thereby enhancing productivity in response to climate change or specific disease instead of producing recombinant proteins. Furthermore, with the advancement in the efficiency of gene editing, it has become possible to edit multiple genes simultaneously. This cattle breed improvement has been achieved by discovering the genes through the comprehensive analysis of the entire genome of cattle. The cattle industry has been able to address gene bottlenecks that were previously impossible through conventional breeding systems. This review concludes that gene editing is necessary to expand the cattle industry, improving productivity in the future. Additionally, the enhancement of cattle through gene editing is expected to contribute to addressing environmental challenges associated with the cattle industry. Further research and development in gene editing, coupled with genomic analysis technologies, will significantly contribute to solving issues that conventional breeding systems have not been able to address.


Asunto(s)
Edición Génica , Ingeniería Genética , Animales , Bovinos/genética , Humanos , Edición Génica/veterinaria , Ingeniería Genética/métodos , Ingeniería Genética/veterinaria , Cruzamiento , Genoma , Ganado/genética , Proteínas Recombinantes
17.
BMB Rep ; 57(1): 50-59, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38053297

RESUMEN

The application of gene engineering in livestock is necessary for various reasons, such as increasing productivity and producing disease resistance and biomedicine models. Overall, gene engineering provides benefits to the agricultural and research aspects, and humans. In particular, productivity can be increased by producing livestock with enhanced growth and improved feed conversion efficiency. In addition, the application of the disease resistance models prevents the spread of infectious diseases, which reduces the need for treatment, such as the use of antibiotics; consequently, it promotes the overall health of the herd and reduces unexpected economic losses. The application of biomedicine could be a valuable tool for understanding specific livestock diseases and improving human welfare through the development and testing of new vaccines, research on human physiology, such as human metabolism or immune response, and research and development of xenotransplantation models. Gene engineering technology has been evolving, from random, time-consuming, and laborious methods to specific, time-saving, convenient, and stable methods. This paper reviews the overall trend of genetic engineering technologies development and their application for efficient production of genetically engineered livestock, and provides examples of technologies approved by the United States (US) Food and Drug Administration (FDA) for application in humans. [BMB Reports 2024; 57(1): 50-59].


Asunto(s)
Resistencia a la Enfermedad , Ganado , Animales , Humanos , Modelos Animales de Enfermedad , Ingeniería Genética , Ganado/genética , Estados Unidos
18.
NPJ Sci Food ; 8(1): 13, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374073

RESUMEN

Numerous studies have explored the cultivation of muscle cells using non-animal materials for cultivated meat production. Achieving muscle cell proliferation and alignment using 3D scaffolds made from plant-based materials remains challenging. This study introduces a technique to culture and align muscle cells using only plant-based materials, avoiding toxic chemical modifications. Zein-alginate fibers (ZA fibers) were fabricated by coating zein protein onto alginate fibers (A fibers). Zein's excellent cell compatibility and biodegradability enable high cell adhesion and proliferation rates, and the good ductility of the ZA fibers enable a high strain rate (>75%). We demonstrate mature and aligned myotube formation in ZA fibers, providing a simple way to align muscle cells using plant-based materials. Additionally, cultivated meat was constructed by assembling muscle, fat, and vessel fibers. This method holds promise for the future mass production of cultivated meat.

19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159433, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38007088

RESUMEN

Western diet (WD), characterized by a high intake of fats and sugary drinks, is a risk factor for male reproductive impairment. However, the molecular mechanisms underlying this remain unclear. Taste receptor type 1 member 3 (TAS1R3), activated by ligands of WD, is highly expressed in extra-oral tissues, particularly in the testes. Here, we investigated to determine the effects of WD intake on male reproduction and whether TAS1R3 mediates WD-induced impairment in male reproduction. Male C57BL/6 J wild-type (WT) and Tas1r3 knockout (KO) mice were fed either a normal diet and plain water (ND) or a 60 % high-fat-diet and 30 % (w/v) sucrose water (WD) for 18 weeks (n = 7-9/group). Long-term WD consumption significantly impaired sperm count, motility and testicular morphology in WT mice with marked Tas1r3 overexpression, whereas Tas1r3 KO mice were protected from WD-induced reproductive impairment. Testicular transcriptome analysis revealed downregulated AMP-activated protein kinase (AMPK) signaling and significantly elevated AMPK-targeted nuclear receptor 4A1 (Nr4a1) expression in WD-fed Tas1r3 KO mice. In vitro studies further validated that Tas1r3 knockdown in Leydig cells prevented the suppression of Nr4a1 and downstream steroidogenic genes (Star, Cyp11a1, Cyp17a1, and Hsd3b1) caused by high glucose, fructose, and palmitic acid levels, and maintained the levels of testosterone. Additionally, we analyzed the public human dataset to assess the clinical implications of our findings and confirmed a significant association between TAS1R3 and male-infertility-related diseases. Our findings suggest that TAS1R3 regulates WD-induced male reproductive impairment via the AMPK/NR4A1 signaling and can be a novel therapeutic target for male infertility.


Asunto(s)
Infertilidad Masculina , Gusto , Ratones , Masculino , Humanos , Animales , Gusto/genética , Proteínas Quinasas Activadas por AMP , Dieta Occidental/efectos adversos , Ratones Endogámicos C57BL , Semen , Ratones Noqueados , Infertilidad Masculina/genética , Agua
20.
Vet World ; 17(5): 1044-1051, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38911087

RESUMEN

Background and Aim: Mycotoxins such as aflatoxin B1 and ochratoxin A (OTA) are secondary metabolites in molds that grow in raw materials or commercial feed. This interaction has a synergistic effect on mortality, body weight, feed intake, embryo abnormalities, egg production, and lymphoid organ atrophy. This study was conducted to determine the effect of a mycotoxin detoxifier on the blood profile of broilers that were given feed contaminated with mycotoxin, such as the number of heterophils, lymphocytes, monocytes, mean corpuscular hemoglobin (MCH), and MCH concentration (MCHC). Materials and Methods: A total of 20 day-old chicks (DOC) of Cobb broilers were given four treatments with five replicates. The number of chickens used in this research was determined using statistical calculations, and the data obtained was homogeneous so that the population was represented. Treatments included negative control with basal feed (C-), positive control with mycotoxins contamination (C+), treatment 1: Mycotoxins contamination and mycotoxin detoxification 1.1 g/kg (T1), and treatment 2: Mycotoxins contamination and mycotoxin detoxification 1.6 g/kg (T2). Mycotoxin contamination comprised 0.1 mg/kg aflatoxin B1 and 0.1 mg/kg OTA. The treatment period for chickens was 28 days, from 8 to 35 days. A battery cage was used in this study. Chickens were kept in a closed, ventilated room and the room temperature (27°C) was monitored during the treatment period. Results: Based on the results of statistical data processing, a significant difference (p < 0.05) was observed between chickens fed mycotoxin-contaminated feed (C+) and chickens not fed mycotoxin-contaminated feed (C-) and chickens given 1.6 g/kg mycotoxin detoxification (T2). Mycotoxin detoxification at a dose of 1.6 g/kg had a significant (p < 0.05) effect on the heterophil, lymphocyte, and heterophil lymphocyte ratio, leukocyte, erythrocyte, and hemoglobin levels of the blood broiler in this experiment. On other parameters such as monocytes, MCH, and MCHC, treatment 2 at dose 1.6 g/kg was the best treatment, although there was no significant effect with C- and T1. Conclusion: The administration of mycotoxin detoxifiers at a dose of 1.6 g/kg increased the number of heterophils and the ratio of heterophil lymphocytes, leukocytes, erythrocytes, and hemoglobin in broilers fed mycotoxin-contaminated feed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA