Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(28): e2206415119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35867768

RESUMEN

Chemotherapy-induced cognitive impairment (CICI) has emerged as a significant medical problem without therapeutic options. Using the platinum-based chemotherapy cisplatin to model CICI, we revealed robust elevations in the adenosine A2A receptor (A2AR) and its downstream effectors, cAMP and CREB, by cisplatin in the adult mouse hippocampus, a critical brain structure for learning and memory. Notably, A2AR inhibition by the Food and Drug Administration-approved A2AR antagonist KW-6002 prevented cisplatin-induced impairments in neural progenitor proliferation and dendrite morphogenesis of adult-born neurons, while improving memory and anxiety-like behavior, without affecting tumor growth or cisplatin's antitumor activity. Collectively, our study identifies A2AR signaling as a key pathway that can be therapeutically targeted to prevent cisplatin-induced cognitive impairments.


Asunto(s)
Antagonistas del Receptor de Adenosina A2 , Antineoplásicos , Deterioro Cognitivo Relacionado con la Quimioterapia , Cisplatino , Neurogénesis , Purinas , Receptor de Adenosina A2A , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Deterioro Cognitivo Relacionado con la Quimioterapia/prevención & control , Cisplatino/efectos adversos , Cognición/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/fisiología , Neurogénesis/efectos de los fármacos , Purinas/administración & dosificación , Purinas/uso terapéutico , Receptor de Adenosina A2A/metabolismo
2.
Small ; : e2300744, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37058079

RESUMEN

Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off-target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology-based approaches have emerged as promising strategies for preventing and treating chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy. NP-based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.

3.
Hum Mol Genet ; 28(11): 1822-1836, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668728

RESUMEN

BUB-related 1 (BubR1) encoded by Budding Uninhibited by Benzimidazole 1B (BUB1B) is a crucial mitotic checkpoint protein ensuring proper segregation of chromosomes during mitosis. Mutations of BUB1B are responsible for mosaic variegated aneuploidy (MVA), a human congenital disorder characterized by extensive abnormalities in chromosome number. Although microcephaly is a prominent feature of MVA carrying the BUB1B mutation, how BubR1 deficiency disturbs neural progenitor proliferation and neuronal output and leads to microcephaly is unknown. Here we show that conditional loss of BubR1 in mouse cerebral cortex recapitulates microcephaly. BubR1-deficient cortex includes a strikingly reduced number of late-born, but not of early-born, neurons, although BubR1 expression is substantially reduced from an early stage. Importantly, absence of BubR1 decreases the proportion of neural progenitors in mitosis, specifically in metaphase, suggesting shortened mitosis owing to premature chromosome segregation. In the BubR1 mutant, massive apoptotic cell death, which is likely due to the compromised genomic integrity that results from aberrant mitosis, depletes progenitors and neurons during neurogenesis. There is no apparent alteration in centrosome number, spindle formation or primary cilia, suggesting that the major effect of BubR1 deficiency on neural progenitors is to impair the mitotic checkpoint. This finding highlights the importance of the mitotic checkpoint in the pathogenesis of microcephaly. Furthermore, the ependymal cell layer does not form in the conditional knockout, revealing an unrecognized role of BubR1 in assuring the integrity of the ventricular system, which may account for the presence of hydrocephalus in some patients.


Asunto(s)
Proteínas de Ciclo Celular/genética , Microcefalia/genética , Mitosis/genética , Neurogénesis/genética , Proteínas Serina-Treonina Quinasas/genética , Alelos , Animales , Apoptosis/genética , Proteínas de Ciclo Celular/deficiencia , Proliferación Celular/genética , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/fisiopatología , Segregación Cromosómica/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Microcefalia/metabolismo , Microcefalia/fisiopatología , Mosaicismo , Mutación/genética , Neuronas/metabolismo , Neuronas/patología , Proteínas Serina-Treonina Quinasas/deficiencia , Huso Acromático/genética , Huso Acromático/patología
4.
Biomed Pharmacother ; 177: 116996, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38897158

RESUMEN

Metabolic syndromes (e.g., obesity) are characterized by insulin resistance, chronic inflammation, impaired glucose metabolism, and dyslipidemia. Recently, patients with metabolic syndromes have experienced not only metabolic problems but also neuropathological issues, including cognitive impairment. Several studies have reported blood-brain barrier (BBB) disruption and insulin resistance in the brain of patients with obesity and diabetes. Adenosine, a purine nucleoside, is known to regulate various cellular responses (e.g., the neuroinflammatory response) by binding with adenosine receptors in the central nervous system (CNS). Adenosine has four known receptors: A1R, A2AR, A2BR, and A3R. These receptors play distinct roles in various physiological and pathological processes in the brain, including endothelial cell homeostasis, insulin sensitivity, microglial activation, lipid metabolism, immune cell infiltration, and synaptic plasticity. Here, we review the recent findings on the role of adenosine receptor-mediated signaling in neuropathological issues related to metabolic imbalance. We highlight the importance of adenosine signaling in the development of therapeutic solutions for neuropathological issues in patients with metabolic syndromes.

5.
Mol Cancer Ther ; 23(5): 662-671, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38224566

RESUMEN

Radioresistance of melanoma brain metastases limits the clinical utility of conventionally fractionated brain radiation in this disease, and strategies to improve radiation response could have significant clinical impact. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is critical for repair of radiation-induced DNA damage, and inhibitors of this kinase can have potent effects on radiation sensitivity. In this study, the radiosensitizing effects of the DNA-PKcs inhibitor peposertib were evaluated in patient-derived xenografts of melanoma brain metastases (M12, M15, M27). In clonogenic survival assays, peposertib augmented radiation-induced killing of M12 cells at concentrations ≥100 nmol/L, and a minimum of 16 hours exposure allowed maximal sensitization. This information was integrated with pharmacokinetic modeling to define an optimal dosing regimen for peposertib of 125 mpk dosed just prior to and 7 hours after irradiation. Using this drug dosing regimen in combination with 2.5 Gy × 5 fractions of radiation, significant prolongation in median survival was observed in M12-eGFP (104%; P = 0.0015) and M15 (50%; P = 0.03), while more limited effects were seen in M27 (16%, P = 0.04). These data support the concept of developing peposertib as a radiosensitizer for brain metastases and provide a paradigm for integrating in vitro and pharmacokinetic data to define an optimal radiosensitizing regimen for potent DNA repair inhibitors.


Asunto(s)
Neoplasias Encefálicas , Proteína Quinasa Activada por ADN , Melanoma , Fármacos Sensibilizantes a Radiaciones , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Humanos , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Ratones , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/patología , Línea Celular Tumoral , Sulfonas/farmacología , Femenino , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico
6.
Int Rev Neurobiol ; 170: 267-305, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37741694

RESUMEN

Chemotherapy has a significant positive impact in cancer treatment outcomes, reducing recurrence and mortality. However, many cancer surviving children and adults suffer from aberrant chemotherapy neurotoxic effects on learning, memory, attention, executive functioning, and processing speed. This chemotherapy-induced cognitive impairment (CICI) is referred to as "chemobrain" or "chemofog". While the underlying mechanisms mediating CICI are still unclear, there is strong evidence that chemotherapy accelerates the biological aging process, manifesting as effects which include telomere shortening, epigenetic dysregulation, oxidative stress, mitochondrial defects, impaired neurogenesis, and neuroinflammation, all of which are known to contribute to increased anxiety and neurocognitive decline. Despite the increased prevalence of CICI, there exists a lack of mechanistic understanding by which chemotherapy detrimentally affects cognition in cancer survivors. Moreover, there are no approved therapeutic interventions for this condition. To address this gap in knowledge, this review attempts to identify how adenosine signaling, particularly through the adenosine A2A receptor, can be an essential tool to attenuate accelerated aging phenotypes. Importantly, the adenosine A2A receptor uniquely stands at the crossroads of cancer treatment and improved cognition, given that it is widely known to control tumor induced immunosuppression in the tumor microenvironment, while also posited to be an essential regulator of cognition in neurodegenerative disease. Consequently, we propose that the adenosine A2A receptor may provide a multifaceted therapeutic strategy to enhance anticancer activity, while combating chemotherapy induced cognitive deficits, both which are essential to provide novel therapeutic interventions against accelerated aging in cancer survivors.


Asunto(s)
Envejecimiento Prematuro , Antineoplásicos , Supervivientes de Cáncer , Deterioro Cognitivo Relacionado con la Quimioterapia , Neoplasias , Enfermedades Neurodegenerativas , Adulto , Niño , Humanos , Adenosina , Deterioro Cognitivo Relacionado con la Quimioterapia/prevención & control , Neoplasias/tratamiento farmacológico , Receptor de Adenosina A2A , Envejecimiento Prematuro/inducido químicamente , Antineoplásicos/efectos adversos
7.
Front Mol Neurosci ; 16: 1295991, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38095013

RESUMEN

Chemobrain is a condition that negatively affects cognition in cancer patients undergoing active chemotherapy, as well as following chemotherapy cessation. Chemobrain is also known as chemotherapy-induced cognitive impairment (CICI) and has emerged as a significant medical contingency. There is no therapy to ameliorate this condition, hence identification of novel therapeutic strategies to prevent CICI is of great interest to cancer survivors. Utilizing the platinum-based chemotherapy cisplatin in an investigative approach for CICI, we identified increased expression of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in the adult mouse hippocampus, and in human cortical neuron cultures derived from induced pluripotent stem cells (iPSCs). Notably, administration of NS398, a selective COX-2 inhibitor, prevented CICI in vivo without negatively affecting the antitumor efficacy of cisplatin or potentiating tumor growth. Given that dysfunctional mitochondrial bioenergetics plays a prominent role in CICI, we explored the effects of NS398 in cisplatin-induced defects in human cortical mitochondria. We found that cisplatin significantly reduces mitochondrial membrane potential (MMP), increases matrix swelling, causes loss of cristae membrane integrity, impairs ATP production, as well as decreases cell viability and dendrite outgrowth. Pretreatment with NS398 in human cortical neurons attenuated mitochondrial dysfunction caused by cisplatin, while improving cell survival and neurite morphogenesis. These results suggest that aberrant COX-2 inflammatory pathways may contribute in cisplatin-induced mitochondrial damage and cognitive impairments. Therefore, COX-2 signaling may represent a viable therapeutic approach to improve the quality of life for cancer survivors experiencing CICI.

8.
Neural Plast ; 2012: 854285, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23346419

RESUMEN

Adult neurogenesis, the process of generating new neurons from neural stem cells, plays significant roles in synaptic plasticity, memory, and mood regulation. In the mammalian brain, it continues to occur well into adulthood in discrete regions, namely, the hippocampus and olfactory bulb. During the past decade, significant progress has been made in understanding the mechanisms regulating adult hippocampal neurogenesis and its role in the etiology of mental disorders. In addition, adult hippocampal neurogenesis is highly correlated with the remission of the antidepressant effect. In this paper, we discuss three major psychiatric disorders, depression, schizophrenia, and drug addiction, in light of preclinical evidence used in establishing the neurobiological significance of adult neurogenesis. We interpret the significance of these results and pose questions that remain unanswered. Potential treatments which include electroconvulsive therapy, deep brain stimulation, chemical antidepressants, and exercise therapy are discussed. While consensus lacks on specific mechanisms, we highlight evidence which indicates that these treatments may function via an increase in neural progenitor proliferation and changes to the hippocampal circuitry. Establishing a significant role of adult neurogenesis in the pathogenicity of psychiatric disorders may hold the key to potential strategies toward effective treatment.


Asunto(s)
Hipocampo/fisiología , Trastornos Mentales/terapia , Neurogénesis/fisiología , Adulto , Antidepresivos/uso terapéutico , Estimulación Encefálica Profunda , Trastorno Depresivo Mayor/psicología , Trastorno Depresivo Mayor/terapia , Terapia Electroconvulsiva , Terapia por Ejercicio , Humanos , Trastornos Mentales/psicología , Plasticidad Neuronal/fisiología , Esquizofrenia/terapia , Trastornos Relacionados con Sustancias/psicología , Trastornos Relacionados con Sustancias/terapia
9.
Brain Plast ; 8(2): 143-152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36721392

RESUMEN

Background: Chemotherapy-induced cognitive impairment (CICI) is a neurotoxic side effect of chemotherapy that has yet to have an effective treatment. Objective: Using cisplatin, a platinum-based chemotherapy together with excitatory cortical neurons derived from human induced pluripotent cells (iPSCs) to model of CICI, our recent study demonstrated that dysregulation of brain NAD+ metabolism contributes to cisplatin-induced impairments in neurogenesis and cognitive function, which was prevented by administration of the NAD+ precursor, nicotinamide mononucleotide (NMN). However, it remains unclear how cisplatin causes neurogenic dysfunction and the mechanism by which NMN prevents cisplatin-induced cognitive impairment. Given that mitochondrial dysfunction is thought to play a prominent role in age-related neurodegenerative disease and chemotherapy-induced neurotoxicity, we sought to explore if NMN prevents chemotherapy-related neurotoxicity by attenuating cisplatin-induced mitochondrial damage. Results: We demonstrate that cisplatin induces neuronal DNA damage, increases generation of mitochondrial reactive oxygen species (ROS) and decreases ATP production, all of which are indicative of oxidative DNA damage and mitochondrial functional defects. Ultrastructural analysis revealed that cisplatin caused loss of cristae membrane integrity and matrix swelling in human cortical neurons. Notably, pretreatment with NMN prevents cisplatin-induced defects in mitochondria of human cortical neurons. Conclusion: Our results suggest that increased mitochondrial oxidative stress and functional defects play key roles in cisplatin-induced neurotoxicity. Thus, NMN may be an effective therapeutic strategy to prevent cisplatin-induced deleterious effects on mitochondria, making this organelle a key factor in amelioration of cisplatin-induced cognitive impairments.

10.
Neurobiol Dis ; 41(3): 678-87, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21146610

RESUMEN

The prevalence of central nervous system (CNS) neurologic dysfunction associated with human immunodeficiency virus (HIV) infection continues to increase, despite the use of antiretroviral therapy. Previous work has focused on the deleterious effects of HIV on mature neurons and on development of neuroprotective strategies, which have consistently failed to show a meaningful clinical benefit. It is now well established that new neurons are continuously generated in discrete regions in the adult mammalian brain, and accumulating evidence supports important roles for these neurons in specific cognitive functions. In a transgenic mouse model of HIV neurologic disease with glial expression of the HIV envelope protein gp120, we demonstrate a significant reduction in proliferation of hippocampal neural progenitors in the dentate gyrus of adult animals, resulting in a dramatic decrease in the number of newborn neurons in the adult brain. We identify amplifying neural progenitor cells (ANPs) as the first class of progenitors affected by gp120, and we also demonstrate that newly generated neurons exhibit aberrant dendritic development. Furthermore, voluntary exercise and treatment with a selective serotonin reuptake inhibitor increase the ANP population and rescue the observed deficits in gp120 transgenic mice. Thus, during HIV infection, the envelope protein gp120 may potently inhibit adult hippocampal neurogenesis, and neurorestorative approaches may be effective in ameliorating these effects. Our study has significant implications for the development of novel therapeutic approaches for HIV-infected individuals with neurologic dysfunction and may be applicable to other neurodegenerative diseases in which hippocampal neurogenesis is impaired.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por VIH/patología , Hipocampo/patología , Neurogénesis , Factores de Edad , Animales , Células Cultivadas , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Proteína gp120 de Envoltorio del VIH/biosíntesis , Infecciones por VIH/metabolismo , Infecciones por VIH/prevención & control , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/genética , Condicionamiento Físico Animal/fisiología
11.
Proc Natl Acad Sci U S A ; 105(37): 14157-62, 2008 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-18780780

RESUMEN

New neurons are continuously generated in restricted regions of the adult mammalian brain. Although these adult-born neurons have been shown to receive synaptic inputs, little is known about their synaptic outputs. Using retrovirus-mediated birth-dating and labeling in combination with serial section electron microscopic reconstruction, we report that mossy fiber en passant boutons of adult-born dentate granule cells form initial synaptic contacts with CA3 pyramidal cells within 2 weeks after their birth and reach morphologic maturity within 8 weeks in the adult hippocampus. Knockdown of Disrupted-in-Schizophrenia-1 (DISC1) in newborn granule cells leads to defects in axonal targeting and development of synaptic outputs in the adult brain. Together with previous reports of synaptic inputs, these results demonstrate that adult-born neurons are fully integrated into the existing neuronal circuitry. Our results also indicate a role for DISC1 in presynaptic development and may have implications for the etiology of schizophrenia and related mental disorders.


Asunto(s)
Envejecimiento/fisiología , Fibras Musgosas del Hipocampo/crecimiento & desarrollo , Neuronas/citología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Femenino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Fibras Musgosas del Hipocampo/ultraestructura , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Interferencia de ARN , Sinapsis/ultraestructura
12.
Exp Mol Med ; 53(3): 358-368, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33785869

RESUMEN

Psychiatric illness is a prevalent and highly debilitating disorder, and more than 50% of the general population in both middle- and high-income countries experience at least one psychiatric disorder at some point in their lives. As we continue to learn how pervasive psychiatric episodes are in society, we must acknowledge that psychiatric disorders are not solely relegated to a small group of predisposed individuals but rather occur in significant portions of all societal groups. Several distinct brain regions have been implicated in neuropsychiatric disease. These brain regions include corticolimbic structures, which regulate executive function and decision making (e.g., the prefrontal cortex), as well as striatal subregions known to control motivated behavior under normal and stressful conditions. Importantly, the corticolimbic neural circuitry includes the hippocampus, a critical brain structure that sends projections to both the cortex and striatum to coordinate learning, memory, and mood. In this review, we will discuss past and recent discoveries of how neurobiological processes in the hippocampus and corticolimbic structures work in concert to control executive function, memory, and mood in the context of mental disorders.


Asunto(s)
Hipocampo/citología , Trastornos Mentales/terapia , Neurogénesis , Neuronas/citología , Medicina Regenerativa , Trastornos Relacionados con Sustancias/terapia , Animales , Humanos
13.
Cell Stem Cell ; 28(5): 955-966.e7, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33848469

RESUMEN

Stem cell dysfunction drives many age-related disorders. Identifying mechanisms that initially compromise stem cell behavior represent early targets to promote tissue function later in life. Here, we pinpoint multiple factors that disrupt neural stem cell (NSC) behavior in the adult hippocampus. Clonal tracing showed that NSCs exhibit asynchronous depletion by identifying short-term NSCs (ST-NSCs) and long-term NSCs (LT-NSCs). ST-NSCs divide rapidly to generate neurons and deplete in the young brain. Meanwhile, multipotent LT-NSCs are maintained for months but are pushed out of homeostasis by lengthening quiescence. Single-cell transcriptome analysis of deep NSC quiescence revealed several hallmarks of molecular aging in the mature brain and identified tyrosine-protein kinase Abl1 as an NSC aging factor. Treatment with the Abl inhibitor imatinib increased NSC activation without impairing NSC maintenance in the middle-aged brain. Our study indicates that hippocampal NSCs are particularly vulnerable and adaptable to cellular aging.


Asunto(s)
Células-Madre Neurales , Neurogénesis , Encéfalo , Senescencia Celular , Hipocampo
14.
Cancer Res ; 81(13): 3727-3737, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771896

RESUMEN

Chemotherapy-induced cognitive impairment (CICI) is often reported as a neurotoxic side effect of chemotherapy. Although CICI has emerged as a significant medical problem, meaningful treatments are not currently available due to a lack of mechanistic understanding underlying CICI pathophysiology. Using the platinum-based chemotherapy cisplatin as a model for CICI, we show here that cisplatin suppresses nicotinamide adenine dinucleotide (NAD+) levels in the adult female mouse brain in vivo and in human cortical neurons derived from induced pluripotent stem cells in vitro. Increasing NAD+ levels through nicotinamide mononucleotide (NMN) administration prevented cisplatin-induced abnormalities in neural progenitor proliferation, neuronal morphogenesis, and cognitive function without affecting tumor growth and antitumor efficacy of cisplatin. Mechanistically, cisplatin inhibited expression of the NAD+ biosynthesis rate-limiting enzyme nicotinamide phosphoribosyl transferase (Nampt). Selective restoration of Nampt expression in adult-born neurons was sufficient to prevent cisplatin-induced defects in dendrite morphogenesis and memory function. Taken together, our findings suggest that aberrant Nampt-mediated NAD+ metabolic pathways may be a key contributor in cisplatin-induced neurogenic impairments, thus causally leading to memory dysfunction. Therefore, increasing NAD+ levels could represent a promising and safe therapeutic strategy for cisplatin-related neurotoxicity. SIGNIFICANCE: Increasing NAD+ through NMN supplementation offers a potential therapeutic strategy to safely prevent cisplatin-induced cognitive impairments, thus providing hope for improved quality of life in cancer survivors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/13/3727/F1.large.jpg.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Cisplatino/toxicidad , Disfunción Cognitiva/prevención & control , Fármacos Neuroprotectores/farmacología , Mononucleótido de Nicotinamida/farmacología , Animales , Antineoplásicos/toxicidad , Apoptosis , Neoplasias de la Mama/patología , Proliferación Celular , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/patología , Femenino , Humanos , Ratones , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Int Neurourol J ; 24(Suppl 2): 72-78, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33271003

RESUMEN

PURPOSE: Aging is the most significant risk factor for neurodegenerative disorders that are typified by cognitive deficits. Our recent work utilizing BubR1 hypomorphic (BubR1H/H) mice, an accelerated aging model, has revealed that genetic inhibition of the endogenous Wnt pathway inhibitor secreted frizzled related protein 3 (sFRP3) plays a neuroprotective role. Neuroinflammation has been suggested as a pathological hallmark of age-related neurodegeneration mediating cognitive impairment. However, whether sFRP3 inhibition has a neuroprotective effect on neuroinflammatory gliosis in BubR1H/H mice is unknown. METHODS: To investigate neuroprotection from aging-related neuroinflammation by sFRP3 in vivo, we generated double Bub R1H/H;sfrp3 knockout mice and performed immunohistological analysis with cell type-specific markers for astrocytes (glial fibrillary acidic protein), and microglia (ionized calcium-binding adapter molecule 1). Given that the hippocampus is a brain structure critical for learning and memory, and is uniquely affected in aging-related neurodegeneration, we evaluated morphological changes on astrocytes and microglia via confocal imaging. RESULTS: We demonstrate that BubR1H/H mice exhibit significantly increased levels of astrogliosis and an increased trend of microglial activation in the hilus and molecular layer of the young adult hippocampus, thus suggesting that BubR1 insufficiency accelerates glial reactivity. Importantly, our results further show that genetic inhibition of sFRP3 significantly recovers the astrogliosis and microglial activation observed in BubR1H/H mice, suggesting a critical neuroprotective role for sFRP3 in age-related neuroinflammation. CONCLUSION: Our findings suggest that sFRP3 inhibition may represent a novel therapeutic strategy for neurodegeneration.

16.
Int Neurourol J ; 23(Suppl 1): S5-10, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30832462

RESUMEN

Synapses are sites of high energy demand which are dependent on high levels of mitochondrial derived adenosine triphosphate. Mitochondria within synaptic structures are key for maintenance of functional neurotransmission and this critical biological process is modulated by energy metabolism, mitochondrial distribution, mitochondrial trafficking, and cellular synaptic calcium flux. Synapse loss is presumed to be an early yet progressive pathological event in Alzheimer disease (AD), resulting in impaired cognitive function and memory loss which is particularly prevalent at later stages of disease. Supporting evidence from AD patients and animal models suggests that pathological mitochondrial dynamics indeed occurs early and is highly associated with synaptic lesions and degeneration in AD neurons. This review comprehensively highlights recent findings that describe how synaptic mitochondria pathology involves dysfunctional trafficking of this organelle, to maladaptive epigenetic contributions affecting mitochondrial function in AD. We further discuss how these negative, dynamic alterations impact synaptic function associated with AD. Finally, this review explores how antioxidant therapeutic approaches targeting mitochondria in AD can further clinical research and basic science investigations to advance our in-depth understanding of the pathogenesis of AD.

17.
Neurosci Lett ; 706: 169-175, 2019 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-31116969

RESUMEN

Impulsivity is defined as a predisposition toward rapid, unplanned reactions in response to internal or external stimuli, often yielding negative consequences. Accordingly, impulsivity is considered a significant risk factor for developing addictive behaviors. The hippocampus is involved in regulating behavioral adaptability and learned behaviors. Consequently, abnormal hippocampal function has been demonstrated to contribute to impulsive and addictive behaviors. Furthermore, differential reinforcement of low rates of behavior (DRL) has shown that the hippocampus is implicated in reward acquisition and impulsivity in humans and rodent models. We have previously shown that impulsive behavior potentiates hippocampal neuroblast proliferation. However, the fate of these precursor cells produced during impulsive reward seeking remains unknown. Here, we demonstrate that DRL-mediated impulsive reward seeking with the 2-choice reaction time task (2-CRTT) increases the number of BrdU labeled cells in the dentate gyrus region of the hippocampus. Importantly, our results also show a significant increase in BrdU+ and NeuN+ colocalized mature newborn neurons in mice exhibiting impulsivity compared to non-impulsive control mice. These results suggest that operant reward seeking during unpredictable schedules of reinforcement contributes to adult hippocampal neurogenesis.


Asunto(s)
Hipocampo/fisiología , Conducta Impulsiva/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Animales , Conducta Animal/fisiología , Proliferación Celular/fisiología , Conducta de Elección/fisiología , Condicionamiento Operante/fisiología , Hipocampo/citología , Masculino , Ratones , Neuronas/citología , Tiempo de Reacción/fisiología , Recompensa
18.
Aging Cell ; 18(2): e12899, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30609266

RESUMEN

Wnt signaling is a well-known molecular pathway in age-related pathogenesis and therapy of disease. While prior studies have mainly focused on Wnt ligands or Wnt activators, the in vivo functions of naturally secreted Wnt inhibitors are not clear, especially in brain aging. Using BubR1H/H mice as a novel mouse model of accelerated aging, we report that genetic inhibition of sFRP3 restores the reduced body and brain size observed in BubR1H/H mice. Furthermore, sFRP3 inhibition ameliorates hypomyelination in the corpus callosum and rescues neural progenitor proliferation in the hippocampal dentate gyrus of BubR1H/H mice. Taken together, our study identifies sFRP3 as a new molecular factor that cooperates with BubR1 function to regulate brain development, myelination, and hippocampal neurogenesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Senescencia Celular , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Progeria/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Ciclo Celular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Mutantes , Proteínas Serina-Treonina Quinasas/genética , Vía de Señalización Wnt
19.
Int Neurourol J ; 22(Suppl 3): S106-114, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30396259

RESUMEN

Previously believed to solely play a supportive role in the central nervous system, astrocytes are now considered active players in normal brain function. Evidence in recent decades extends their contributions beyond the classically held brain glue role; it's now known that astrocytes act as a unique excitable component with functions extending into local network modulation, synaptic plasticity, and memory formation, and postinjury repair. In this review article, we highlight our growing understanding of astrocyte function and physiology, the increasing role of gliotransmitters in neuron-glia communication, and the role of astrocytes in modulating synaptic plasticity and cognitive function. Owing to the duality of both beneficial and deleterious roles attributed to astrocytes, we also discuss the implications of this new knowledge as it applies to neurological disorders including Alzheimer disease, epilepsy, and schizophrenia.

20.
Int Neurourol J ; 22(Suppl 3): S122-130, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30396261

RESUMEN

PURPOSE: Although aging causes functional declines in cognition, the molecular mechanism underlying these declines remains largely unknown. Recently, the spindle checkpoint kinase budding uninhibited by benzimidazole-related 1 (BubR1) has emerged as a key determinant for age-related pathology in various tissues including brain. However, the neurobehavioral impact of BubR1 has not been explored. In this study, we investigated the role of BubR1 in behavioral function. METHODS: To investigate the neurobiological functions of BubR1 in vivo, we utilized transgenic mice harboring BubR1 hypomorphic alleles (BubR1H/H mice), which produce low amounts of BubR1 protein, as well as mice that have specific knockdown of BubR1 in the adult dentate gyrus. To assess anxiety-like behavior, the above groups were subjected to the elevated plus maze and the light-dark test, in addition to utilizing the tail-suspension and forced-swim test to determine depression-like behavior. We used novel object recognition to test for memory-related function. RESULTS: We found that BubR1H/H mice display several behavioral deficits when compared to wild-type littermates, including increased anxiety in the elevated-plus maze test, depression-like behavior in the tail suspension test, as well as impaired memory function in the novel object recognition test. Similar to BubR1H/H mice, knockdown of BubR1 within the adult dentate gyrus led to increased anxiety-like behavior as well as depression-like behavior, and impaired memory function. CONCLUSION: Our study demonstrates a requirement of BubR1 in maintaining proper affective and memory-related behavioral function. These results suggest that a decline in BubR1 levels with advanced age may be a crucial contributor to age-related hippocampal dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA