Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Chem Soc Rev ; 52(5): 1947-1974, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36786672

RESUMEN

Porphyrin derivatives are ubiquitous in bio-organisms and are associated with proteins that play important biological roles, such as oxygen transport, photosynthesis, and catalysis. Porphyrins are very fascinating research objects for chemists, physicists, and biologists owing to their versatile chemical and physical properties. Porphyrin derivatives are actively used in various fields, such as molecular recognition, energy conversion, sensors, biomedicine, and catalysts. Porphyrin derivatives can be used as building blocks for supramolecular polymers because their primitive structures have C4 symmetry, which allows for the symmetrical introduction of self-assembling motifs. This review describes the fabrication of porphyrin-based supramolecular polymers and novel discoveries in supramolecular polymer growth. First, we summarise the (i) design concepts, (ii) growth mechanism and (iii) analytical methods of porphyrin-based supramolecular polymers. Then, the examples of porphyrin-based supramolecular polymers formed by (iv) hydrogen bonding, (v) metal coordination-based interaction, (vi) host-guest complex formation, and (vii) others are summarised. Finally, (viii) applications and perspectives are discussed. Although supramolecular polymers, in a broad sense, can include either two-dimensional (2D) networks or three-dimensional (3D) porous polymer structures; this review mainly focuses on one-dimensional (1D) fibrous supramolecular polymer structures.

2.
Acc Chem Res ; 54(9): 2249-2260, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33891405

RESUMEN

Porphyrin derivatives are ubiquitous in nature and have important biological roles, such as in light harvesting, oxygen transport, and catalysis. Owing to their intrinsic π-conjugated structure, porphyrin derivatives exhibit characteristic photophysical and electrochemical properties. In biological systems, porphyrin derivatives are associated with various protein molecules through noncovalent interactions. For example, hemoglobin, which is responsible for oxygen transport in most vertebrates, consists of four subunits of a globular protein with an iron porphyrin derivative prosthetic group. Furthermore, noncovalently arranged porphyrin derivatives are the fundamental chromophores in light-harvesting systems for photosynthesis in plants and algae. These biologically important roles originate from the functional versatility of porphyrin derivatives. Specifically, porphyrins are excellent host compounds, forming coordination complexes with various metal ions that adds functionality to the porphyrin unit, such as redox activity and additional ligand binding at the central metal ion. In addition, porphyrins are useful building blocks for functional supramolecular assemblies because of their flat and symmetrical molecular architectures, and their excellent photophysical properties are typically utilized for the fabrication of bioactive functional materials. In this Account, we summarize our endeavors over the past decade to develop functional materials based on porphyrin derivatives using bioinspired approaches. In the first section, we discuss several synthetic receptors that act as artificial allosteric host systems and can be used for the selective detection of various chemicals, such as cyanide, chloride, and amino acids. In the second section, we introduce multiporphyrin arrays as mimics of natural light-harvesting complexes. The active control of energy transfer processes by additional guest binding and the fabrication of organic photovoltaic devices using porphyrin derivatives are also introduced. In the third section, we introduce several types of porphyrin-based supramolecular assemblies. Through noncovalent interactions such as metal-ligand interaction, hydrogen bonding, and π-π interaction, porphyrin derivatives were constructed as supramolecular polymers with formation of fiber or toroidal assembly. In the last section, the application of porphyrin derivatives for biomedical nanodevice fabrication is introduced. Even though porphyrins were good candidates as photosensitizers for photodynamic therapy, they have limitations for biomedical application owing to aggregation in aqueous media. We suggested ionic dendrimer porphyrins and they showed excellent photodynamic therapy (PDT) efficacy.


Asunto(s)
Porfirinas/metabolismo , Aminoácidos/análisis , Cloruros/análisis , Cianuros/análisis , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Estructura Molecular , Oxidación-Reducción , Porfirinas/química , Proteínas/química , Proteínas/metabolismo
3.
J Am Chem Soc ; 143(42): 17548-17556, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34653334

RESUMEN

Single-component polymeric materials open up a great potential for self-assembly into mesoscale complex crystal structures that are known as Frank-Kasper (FK) phases. Predicting the packing structures of the soft-matter spheres, however, remains a challenge even when the molecular design is precisely known. Here, we investigate the role of the molecules' enthalpic interaction in determining the low-symmetry crystal structures. To this end, we synthesize architecturally asymmetric dendrons by varying their apex functionalities and examine the packing structures of the second-generation (G2) dendritic wedges. Our work shows that weakening the hydrogen bonding of the dendron apex makes the particles softer and smaller, and leads to the formation of various FK structures at lower temperatures, including the new observation of a FK C14 phase in the cone-shaped dendron systems. As a consequence of the free energy balance between the particle's interfacial tension and the chain's stretching, various packing structures are mainly tuned by designing the hydrogen bonding interaction.

4.
Chem Soc Rev ; 46(9): 2437-2458, 2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-27711665

RESUMEN

Crown ethers, discovered by the winner of the Nobel Prize Charles Pedersen, are cyclic chemical compounds that consist of a ring or multiple rings containing several ether groups that are capable of binding alkali ions. A smart fluorescent probe containing a crown ether moiety could be developed as a sensor for metal ions, anions and other bio-molecules and be further applied to monitor the relevant biological process in vivo. This review highlights recent advances which can be divided into seven parts: (i) fluorescent probes containing a simple crown ether or an aza-crown ether structure; (ii) fluorescent probes containing an azathia crown ether; (iii) fluorescent probes containing a cryptand; (iv) fluorescent probes containing two or more binding sites; (v) crown ether derivatives-metal complex assisted chemosensing of bioactive species; (vi) crown ether-based chemosensors for bioactive molecular detection; and (vii) efforts to improve biological relevance.


Asunto(s)
Éteres Corona/química , Éteres Corona/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Imagen Óptica , Imagen Molecular
5.
J Am Chem Soc ; 139(2): 993-1002, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-27977172

RESUMEN

A series of dendritic multiporphyrin arrays (PZnTz-nPFB; n = 2, 4, 8) comprising a triazole-bearing focal zinc porphyrin (PZn) with a different number of freebase porphyrin (PFB) wings has been synthesized, and their photoinduced energy transfer process has been evaluated. UV/vis absorption, emission, and time-resolved fluorescence measurements indicated that efficient excitation energy transfer takes place from the focal PZn to PFB wings in PZnTz-nPFB's. The triazole-bearing PZn effectively formed host-guest complexes with anionic species by means of axial coordination with the aid of multiple C-H hydrogen bonds. By addition of various anionic guests to PZnTz and PZnTz-nPFB's, strong bathochromic shifts of PZn absorption were observed, indicating the HOMO-LUMO gap (ΔEHOMO-LUMO) of PZn decreased by anion binding. Time-resolved fluorescence measurements revealed that the fluorescence emission predominantly takes place from PZn in PZnTz-nPFB's after the addition of CN-. This change was reversible because a treatment with a silver strip to remove CN- fully recovered the original energy transfer process from the focal PZn to PFB wings.

6.
J Am Chem Soc ; 137(38): 12394-9, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26349620

RESUMEN

We report the formation of supramolecular coordination polymers formed from multiporphyrin dendrimers (PZnPM; M = FB or Cu), composed of the focal freebase porphyrin (PFB) or cupper porphyrin (PCu) with eight zinc porphyrin (PZn) wings, and multipyridyl porphyrins (PyPM; M = FB or Cu), PFB or PCu with eight pyridyl groups, through multiple axial coordination interactions of pyridyl groups to PZns. UV-vis absorption spectra were recorded upon titration of PyPFB to PZnPFB. Differential spectra, obtained by subtracting the absorption of PZnPFB without guest addition as well as the absorption of PyPFB, exhibited clear isosbestic points with saturation binding at 1 equiv addition of PyPFB to PZnPFB. Job's plot analysis also indicated 1:1 stoichiometry for the saturation binding. The apparent association constant between PZnPFB and PyPFB (2.91 × 10(6) M(-1)), estimated by isothermal titration calorimetry, was high enough for fibrous assemblies to form at micromolar concentrations. The formation of a fibrous assembly from PZnPFB and PyPFB was visualized by atomic force microscopy and transmission electron microscopy (TEM). When a 1:1 mixture solution of PZnPFB and PyPFB (20 µM) in toluene was cast onto mica, fibrous assemblies with regular height (ca. 2 nm) were observed. TEM images obtained from 1:1 mixture solution of PZnPFB and PyPFB (0.1 wt %) in toluene clearly showed the formation of nanofibers with a regular diameter of ca. 6 nm. Fluorescence emission measurement of PZnPM indicated efficient intramolecular energy transfer from PZn to the focal PFB or PCu. By the formation of supramolecular coordination polymers, the intramolecular energy transfer changed to intermolecular energy transfer from PZnPM to PyPM. When the nonfluorescent PyPCu was titrated to fluorescent PZnPFB, fluorescence emission from the focal PFB was gradually decreased. By the titration of fluorescent PyPFB to nonfluorescent PZnPCu, fluorescence emission from PFB in PyPFB was gradually increased due to the efficient energy transfer from PZn wings in PZnPCu to PyPFB.


Asunto(s)
Dendrímeros/química , Luz , Polímeros/síntesis química , Porfirinas/química , Modelos Moleculares , Polímeros/química
7.
Nano Lett ; 14(9): 5365-70, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25111197

RESUMEN

Using scanning tunneling microscope break-junction experiments and a new first-principles approach to conductance calculations, we report and explain low-bias charge transport behavior of four types of metal-porphyrin-gold molecular junctions. A nonequilibrium Green's function approach based on self-energy corrected density functional theory and optimally tuned range-separated hybrid functionals is developed and used to understand experimental trends quantitatively. Importantly, due to the localized d states of the porphyrin molecules, hybrid functionals are essential for explaining measurements; standard semilocal functionals yield qualitatively incorrect results. Comparing directly with experiments, we show that the conductance can change by nearly a factor of 2 when different metal cations are used, counter to trends expected from gas-phase ionization energies which are relatively unchanged with the metal center. Our work explains the sensitivity of the porphyrin conductance with the metal center via a detailed and quantitative portrait of the interface electronic structure and provides a new framework for understanding transport quantitatively in complex junctions involving molecules with localized d states of relevance to light harvesting and energy conversion.

8.
J Am Chem Soc ; 136(4): 1672-9, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24401158

RESUMEN

A bisindole-bridged-porphyrin tweezer (1), a pair of zinc porphyrins (PZn's) connected to bisindole bridge (BB) via the Cu(I)-mediated alkyne-azide click chemistry, exhibited unique switching in forward and backward photoinduced energy transfer by specific guest bindings. The addition of Cu(2+) caused a change in electronic absorption and fluorescence quenching of 1. MALDI-TOF-MS and FT-IR analyses indicated the formation of stable coordination complex between 1 and Cu(2+) (1-Cu(II)). Without Cu(2+) coordination, the excitation energy flows from BB to PZn's with significantly high energy transfer efficiency. In contrast, the direction of energy flow in 1 was completely reversed by the coordination of Cu(2+). The difference in fluorescence quantum yield between 1 and 1-Cu(II) indicates that more than 95% of excitation energy of PZn flows into Cu(II)-coordinated BB. The energy transfer efficiency was further controlled by bidentate ligand coordination onto 1-Cu(II). When pyrophosphate ion was added to 1-Cu(II), the recovery of fluorescence emission from PZn was observed. The quantum mechanical calculations indicated that the Cu(II)-coordinated BB has square planar geometry, which can be distorted to form octahedral geometry due to the coordination of bidentate ligands.

9.
Biomacromolecules ; 15(4): 1382-9, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24598017

RESUMEN

Self-assembled polymeric nanocapsules (NCs) that incorporate dendrimer porphyrin (DP) in the shells and superparamagnetic iron oxide nanoparticles (SPIONs) in the cores are fabricated to create a theragnostic platform for the application in photodynamic therapy (PDT) and magnetic resonance imaging (MRI). SPIONs-embedded polystyrene NPs (SPIONs@PS) are used as a template to build up multilayered NCs. The formation of PAH/DP multilayer on the SPIONs@PS is monitored by zeta-pential and fluorescence emission measurement, because the porphyrin unit in the core of DP has strong red fluorescence emission. NCs have strong enough magnetic property (>20 emu/g) for MRI application with typical superparamagnetic behavior, where the linear correlation of R2 and Fe concentration at diluted conditions led to corresponding T2 relaxivity coefficient (r2) value of 93.5 mM(-1) s(-1). Cell viability study upon light irradiation reveals that NCs can successfully work in photosensitizer formulation for PDT.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Nanocápsulas/química , Nanotecnología/métodos , Fotoquimioterapia/métodos , Dendrímeros/química , Compuestos Férricos/química , Fluorescencia , Células HeLa/efectos de los fármacos , Humanos , Nanocápsulas/uso terapéutico , Nanocápsulas/toxicidad , Fármacos Fotosensibilizantes/química , Poliaminas/química , Poliestirenos/química , Porfirinas/química , Especies Reactivas de Oxígeno/análisis
10.
Angew Chem Int Ed Engl ; 53(27): 6925-8, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24828751

RESUMEN

An artificial light-harvesting multiporphyrin dendrimer (8P(Zn)P(FB)) composed of a focal freebase porphyrin (P(FB)) with eight zinc(II) porphyrin (P(Zn)) wings exhibited unique photophysical property switching in response to specific guest molecule binding. UV/Vis titration studies indicated stable 1:2 host-guest complex formation between 8P(Zn)P(FB) and meso-tetrakis(4-pyridyl)-porphyrin (TPyP) for which the first and second association constants were estimated to be >10(8) M(-1) and 3.0×10(7) M(-1), respectively. 8P(Zn)P(FB) originally shows 94% energy transfer efficiency from P(Zn) to the focal P(FB). By the formation of the host-guest complex (8P(Zn)P(FB)⋅2TPyP) the emission intensity of 8P(Zn)P(FB) is significantly decreased, and an ultrafast charge separation state is generated. The energy transfer process from P(Zn) wings to the P(FB) core in 8P(Zn)P(FB) is almost entirely switched to an electron transfer process by the formation of 8P(Zn)P(FB)⋅2TPyP.


Asunto(s)
Materiales Biocompatibles/química , Dendrímeros/química , Transporte de Electrón , Transferencia de Energía , Luz , Complejos de Proteína Captadores de Luz/química , Espectroscopía de Resonancia Magnética , Porfirinas/química
11.
ACS Appl Mater Interfaces ; 16(24): 31384-31391, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38855921

RESUMEN

Soft electronic materials hold great promise for advancing flexible functional devices. Among the various soft materials available, hydrogels are particularly attractive for soft electronic device development due to their inherent properties, including transparency, shape adaptability through swelling/deswelling, and self-healing capabilities. Transparent hydrogels contribute to the creation of advanced smart devices such as sensors, smart windows, and anticounterfeiting technologies. Poly(vinyl alcohol) hydrogels are used as a platform for creating electrofluorochromic (EFC) devices in combination with oligothiophene-conjugated benzothiazole derivatives (OCBs) as fluorescent emitters. OCBs demonstrated excited-state intramolecular proton transfer (ESIPT) behavior with a large Stokes shift and emission changes responsive to solvent polarity and pH stimuli. Even in the solid state, OCBs exhibited strong fluorescence emission across a wide range of colors from blue to red, making them exceptionally well-suited for EFC device development. Their quantum yields in the powder state were obtained between 2.3% and 19.9%. Through the incorporation of OCBs into a PVA hydrogel (OCB@PVA), we achieved the successful fabrication of flexible EFC devices, including electronic paper and smart panels. When electric potentials (-2.4 and +2.4 V) were applied in OCB@PVA, fluorescence color changes were observed by an electrochemically induced pH change owing to electrohydrolysis of water. These devices demonstrated the potential of OCB@PVA hydrogels in the realm of flexible electronics. They could be used to create innovative and versatile devices with stimuli-responsive fluorescence properties.

12.
Nanoscale ; 15(37): 15108-15145, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37712254

RESUMEN

The resurgence of cellulose as nano-dimensional 'nanocellulose' has unlocked a sustainable bioeconomy for the development of advanced functional biomaterials. Bestowed with multifunctional attributes, such as renewability and abundance of its source, biodegradability, biocompatibility, superior mechanical, optical, and rheological properties, tunable self-assembly and surface chemistry, nanocellulose presents exclusive opportunities for a wide range of novel applications. However, to alleviate its intrinsic hydrophilicity-related constraints surface functionalization is inevitably needed to foster various targeted applications. The abundant surface hydroxyl groups on nanocellulose offer opportunities for grafting small molecules or macromolecular entities using either a 'graft onto' or 'graft from' approach, resulting in materials with distinctive functionalities. Most of the reviews published to date extensively discussed 'graft from' modification approaches, however 'graft onto' approaches are not well discussed. Hence, this review aims to provide a comprehensive summary of 'graft onto' approaches. Furthermore, insight into some of the recently emerging applications of this grafted nanocellulose including advanced nanocomposite formulation, stimuli-responsive materials, bioimaging, sensing, biomedicine, packaging, and wastewater treatment has also been reviewed.

13.
Nanoscale ; 15(45): 18224-18232, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37942951

RESUMEN

Porphyrin dyads (PDMs, where M = Zn and Cu) composed of diphenylporphyrin and tetraphenylporphyrin units, designated as DPDMs and TPDMs, respectively, exhibited remarkable differences in the molecular assemblies depending on the coordination metal ion. Furthermore, TPDMs showed self-sorting behavior during the formation of supramolecular assemblies through the recognition of atomic-level difference.

14.
Nat Commun ; 14(1): 3808, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369676

RESUMEN

Diatomic-site catalysts (DACs) garner tremendous attention for selective CO2 photoreduction, especially in the thermodynamical and kinetical mechanism of CO2 to C2+ products. Herein, we first engineer a novel Zn-porphyrin/RuCu-pincer complex DAC (ZnPor-RuCuDAC). The heteronuclear ZnPor-RuCuDAC exhibits the best acetate selectivity (95.1%), while the homoatomic counterparts (ZnPor-Ru2DAC and ZnPor-Cu2DAC) present the best CO selectivity. In-situ spectroscopic measurements reveal that the heteronuclear Ru-Cu sites easily appear C1 intermediate coupling. The in-depth analyses confirm that due to the strong gradient orbital coupling of Ru4d-Cu3d resonance, two formed *CO intermediates of Ru-Cu heteroatom show a significantly weaker electrostatic repulsion for an asymmetric charge distribution, which result from a side-to-side absorption and narrow dihedral angle distortion. Moreover, the strongly overlapped Ru/Cu-d and CO molecular orbitals split into bonding and antibonding orbitals easily, resulting in decreasing energy splitting levels of C1 intermediates. These results collectively augment the collision probability of the two *CO intermediates on heteronuclear DACs. This work first provides a crucial perspective on the symmetry-forbidden coupling mechanism of C1 intermediates on diatomic sites.

15.
Nanoscale ; 15(20): 9069-9075, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37158020

RESUMEN

Unique sphere-packing mesophases such as Frank-Kasper (FK) phases have emerged from the viable design of intermolecular interactions in supramolecular assemblies. Herein, a series of Cn-G2-CONH2 dendrons possessing an identical core wedge are investigated to elucidate the impact of peripheral alkyl chain lengths (Cn) on the formation of the close-packed structures. The C18 and C14 dendrons, of which the contour lengths of the periphery Lp are longer than the wedge length Lw, assemble into a uniform sphere-packing phase such as body-centred cubic (BCC), whereas the C8 dendron with short (Lp < Lw) corona environment forms the FK A15 phase. Particularly in the intermediate C12 and C10 dendrons (Lp ≈ Lw), cooling the samples from an isotropic state leads to cooling-rate-dependent phase behaviours. The C12 dendron produces two structures of hexagonal columnar and sphere-packing phases (BCC and A15), while the C10 dendron generates the A15 and σ phases by the fast- and slow-cooling processes, respectively. Our results show the impact of peripheral alkyl chain lengths on the formation of mesocrystal phases, where the energy landscape of the dendrons at Lp/Lw ≈ 1 must be more complex and delicate than those with either longer or shorter peripheral alkyl chains.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38014872

RESUMEN

Construction of three-dimensional (3D) frameworks maintaining intrinsic photophysical properties of monomeric building blocks is difficult and challenging due to the existence of various molecular interactions, such as metal-organic and π-π interactions. A 3D hydrogen-bonded organic framework (YSH-1Zn) with permanent porosity was constructed using a porphyrin having six carboxylic acid groups (1Zn). Brunauer-Emmett-Teller surface area measurement indicated that YSH-1Zn has a porous structure with a surface area of 392 m2/g. Single-crystal X-ray diffraction analysis revealed that 1Zn creates a 5-fold interwoven 3D network structure adopting a monoclinic system with a space group of P21/c. Each 1Zn within a single crystal exhibits parallel alignment with a slip-stack angle of 54.6°, in good agreement with the magic angle. Although the center-to-center distance of the nearest zinc atoms in YSH-1Zn is only 5.181 Å, the UV/vis absorption and fluorescence emission of YSH-1Zn are not different from those of 1Zn, indicating the absence of an interaction between excitons. Due to the magic angle alignment of 1Zn, the fluorescence lifetime, decay profiles, and quantum yield remained uniform even in the solid state.

17.
Chemistry ; 18(39): 12479-86, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-22907920

RESUMEN

A new type of molecular tweezer (1) has been synthesized for the direct determination of the absolute configuration of chiral carboxylates without analyte derivatization. Upon the addition of diamine and anionic guests, 1 exhibited shifts in its absorption spectrum with clear isosbestic points. The continuous variation method indicated that both the diamine and anionic guests form 1:1 host-guest complexes with 1 with very high binding affinity. When Boc-L-Ala (BLA) as a form of tetrabutylammonium salt was added to 1, a weak negative CD signal was observed. This weak CD signal was dramatically changed to a strong positive CD couplet upon addition of achiral 1,12-diaminododecane. Such a positive CD couplet was observed for all of the tested L-amino acid derivatives, while the D-amino acid derivatives gave the opposite signals. As a result of these unique characteristics of 1, it can be utilized as a highly sensitive probe for the absolute stereochemical determination of chiral carboxylates.


Asunto(s)
Aminas/química , Aminoácidos/química , Ácidos Carboxílicos/química , Metaloporfirinas/química , Dicroismo Circular , Espectroscopía de Resonancia Magnética , Estructura Molecular , Estereoisomerismo
18.
Chemistry ; 18(15): 4513-6, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22415946

RESUMEN

Turn on events: A molecular probe consisting of a boradiazaindacene unit conjugated with a dicyano-vinyl group has been designed for the selective and sensitive detection of cyanide by strong fluorescence enhancement in aqueous media (see scheme).


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Aniones/química , Boranos/química , Cianuros/química , Colorantes Fluorescentes/química , Sondas Moleculares/química , Compuestos de Vinilo/química , 2,2'-Dipiridil/química , Agua
19.
ACS Appl Bio Mater ; 5(6): 3057-3066, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35533679

RESUMEN

Spontaneously sp2-carbonized polyamides (PA1, PA2) were prepared via Knoevenagel-type side reactions of malonyl moieties under mild conditions in the polycondensation of dicarbonyl chloride and diamine. Both polymers were soluble in water and emissive in the visible region, and the fluorescence (FL) intensity and the maximum wavelength were highly dependent on the excitation wavelength and the pH. Their chemical structures and FL origin were clarified by performing various spectroscopic analyses. π*-π transition was assumed to be allowed in an enol form based on the conjugated structure formed by the side reaction; this was responsible for its pH dependency and high FL quantum efficiency. In particular, PA2, which comprises the tertiary amide linkage, showed quick endocytosis, low cytotoxicity, excellent biocompatibility, and exclusively stained lysosomes with the lowest intracellular pH. These results will help in understanding the origin of the FL emission of carbonized nanomaterials and exploring more advanced functions in the field of bioimaging.


Asunto(s)
Colorantes Fluorescentes , Nylons , Colorantes Fluorescentes/toxicidad , Lisosomas , Polímeros/química , Agua/química
20.
Nanoscale ; 14(45): 16936-16943, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36345976

RESUMEN

The close-packed mesocrystal structures from soft-matter assemblies have recently received attention due to their structural similarity to atomic crystals, displaying various sphere-packing Frank-Kasper (FK) and quasicrystal structures. Herein, diverse mesocrystal structures are explored in second-generation dendrons (G2-X) designed with identical wedges, in which the terminal functionalities X = CONH2 and CH2NH2 represent two levels of the strong and weak hydrogen-bonding apexes, respectively. The cohesive interactions at the core apex, referred to as the core interactions, are effectively modulated by forming heterogeneous hydrogen bonds between these two functional units. For the dendron assemblies compositionally close to each pure component of G2-CONH2 and G2-CH2NH2, their own FK A15 and C14 phases dominate other phases, respectively. We show the existence of the wide-range FK σ including the dodecagonal quasicrystal (DDQC) phases from the dendron mixtures between G2-CONH2 and G2-CH2NH2, providing an experimental phase sequence of A15-σ-DDQC-C14 as the core interactions are alleviated. Intriguingly, the temperature dependence of particle sizes shows that the high plateau values of particle sizes are maintained equivalently until each threshold temperature (Tth), followed by a prompt decrease above the Tth. A decrease in Tth by alleviating the core interactions and its composition dependence suggest that the more size-dispersed particles, the more susceptibility to chain exchange with increasing temperature. Our results on the formation of supramolecular dendron assemblies provide a guide to understand the core-interaction-dependent mesocrystal structures toward the fundamental principle underlying the temperature dependence of their particle sizes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA