Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Biol Chem ; 300(6): 107331, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703997

RESUMEN

Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.


Asunto(s)
Proteínas Bacterianas , Tirosina , Yersinia , Glicosilación , Humanos , Yersinia/metabolismo , Yersinia/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Tirosina/metabolismo , Tirosina/química , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/química , Proteína de Unión al GTP rhoA/metabolismo , Yersinia enterocolitica/metabolismo , Yersinia enterocolitica/genética , Animales , Células HeLa , Ratones , Cristalografía por Rayos X , Yersiniosis/metabolismo , Yersiniosis/microbiología
2.
Annu Rev Microbiol ; 71: 281-307, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28657883

RESUMEN

Clostridium difficile is the cause of antibiotics-associated diarrhea and pseudomembranous colitis. The pathogen produces three protein toxins: C. difficile toxins A (TcdA) and B (TcdB), and C. difficile transferase toxin (CDT). The single-chain toxins TcdA and TcdB are the main virulence factors. They bind to cell membrane receptors and are internalized. The N-terminal glucosyltransferase and autoprotease domains of the toxins translocate from low-pH endosomes into the cytosol. After activation by inositol hexakisphosphate (InsP6), the autoprotease cleaves and releases the glucosyltransferase domain into the cytosol, where GTP-binding proteins of the Rho/Ras family are mono-O-glucosylated and, thereby, inactivated. Inactivation of Rho proteins disturbs the organization of the cytoskeleton and affects multiple Rho-dependent cellular processes, including loss of epithelial barrier functions, induction of apoptosis, and inflammation. CDT, the third C. difficile toxin, is a binary actin-ADP-ribosylating toxin that causes depolymerization of actin, thereby inducing formation of the microtubule-based protrusions. Recent progress in understanding of the toxins' actions include insights into the toxin structures, their interaction with host cells, and functional consequences of their actions.


Asunto(s)
ADP Ribosa Transferasas/toxicidad , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Clostridioides difficile/metabolismo , Enterotoxinas/toxicidad , Células Epiteliales/efectos de los fármacos , Factores de Virulencia/toxicidad , ADP Ribosa Transferasas/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Citoesqueleto/efectos de los fármacos , Endocitosis , Enterotoxinas/metabolismo , Células Epiteliales/fisiología , Humanos , Microtúbulos/efectos de los fármacos , Factores de Virulencia/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(38): 9580-9585, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181275

RESUMEN

Various bacterial protein toxins, including Clostridium difficile toxins A (TcdA) and B (TcdB), attack intracellular target proteins of host cells by glucosylation. After receptor binding and endocytosis, the toxins are translocated into the cytosol, where they modify target proteins (e.g., Rho proteins). Here we report that the activity of translocated glucosylating toxins depends on the chaperonin TRiC/CCT. The chaperonin subunits CCT4/5 directly interact with the toxins and enhance the refolding and restoration of the glucosyltransferase activities of toxins after heat treatment. Knockdown of CCT5 by siRNA and HSF1A, an inhibitor of TRiC/CCT, blocks the cytotoxic effects of TcdA and TcdB. In contrast, HSP90, which is involved in the translocation and uptake of ADP ribosylating toxins, is not involved in uptake of the glucosylating toxins. We show that the actions of numerous glycosylating toxins from various toxin types and different species depend on TRiC/CCT. Our data indicate that the TRiC/CCT chaperonin system is specifically involved in toxin uptake and essential for the action of various glucosylating protein toxins acting intracellularly on target proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Chaperonina con TCP-1/metabolismo , Clostridioides difficile/fisiología , Enterotoxinas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Animales , Chaperonina con TCP-1/antagonistas & inhibidores , Chaperonina con TCP-1/genética , Clostridioides difficile/patogenicidad , Citosol/metabolismo , Fibroblastos , Técnicas de Silenciamiento del Gen , Glicosilación , Proteínas HSP90 de Choque Térmico/metabolismo , Células HeLa , Humanos , Ratones , ARN Interferente Pequeño/metabolismo
4.
J Biol Chem ; 294(3): 1035-1044, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30478175

RESUMEN

The nematode mutualistic bacterium Photorhabdus asymbiotica produces a large virulence-associated multifunctional protein toxin named PaTox. A glycosyltransferase domain and a deamidase domain of this large toxin function as effectors that specifically target host Rho GTPases and heterotrimeric G proteins, respectively. Modification of these intracellular regulators results in toxicity toward insects and mammalian cells. In this study, we identified a cysteine protease-like domain spanning PaTox residues 1844-2114 (PaToxP), upstream of these two effector domains and characterized by three conserved amino acid residues (Cys-1865, His-1955, and Asp-1975). We determined the crystal structure of the PaToxP C1865A variant by native single-wavelength anomalous diffraction of sulfur atoms (sulfur-SAD). At 2.0 Å resolution, this structure revealed a catalytic site typical for papain-like cysteine proteases, comprising a catalytic triad, oxyanion hole, and typical secondary structural elements. The PaToxP structure had highest similarity to that of the AvrPphB protease from Pseudomonas syringae classified as a C58-protease. Furthermore, we observed that PaToxP shares structural homology also with non-C58-cysteine proteases, deubiquitinases, and deamidases. Upon delivery into insect larvae, PaToxP alone without full-length PaTox had no toxic effects. Yet, PaToxP expression in mammalian cells was toxic and enhanced the apoptotic phenotype induced by PaTox in HeLa cells. We propose that PaToxP is a C58-like cysteine protease module that is essential for full PaTox activity.


Asunto(s)
Toxinas Bacterianas/química , Proteasas de Cisteína/química , Photorhabdus/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Cristalografía por Rayos X , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Photorhabdus/genética , Photorhabdus/metabolismo , Dominios Proteicos
5.
J Biol Chem ; 294(8): 2862-2879, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30573678

RESUMEN

Legionella pneumophila causes Legionnaires' disease, a severe form of pneumonia. L. pneumophila translocates more than 300 effectors into host cells via its Dot/Icm (Defective in organelle trafficking/Intracellular multiplication) type IV secretion system to enable its replication in target cells. Here, we studied the effector LtpM, which is encoded in a recombination hot spot in L. pneumophila Paris. We show that a C-terminal phosphoinositol 3-phosphate (PI3P)-binding domain, also found in otherwise unrelated effectors, targets LtpM to the Legionella-containing vacuole and to early and late endosomes. LtpM expression in yeast caused cytotoxicity. Sequence comparison and structural homology modeling of the N-terminal domain of LtpM uncovered a remote similarity to the glycosyltransferase (GT) toxin PaTox from the bacterium Photorhabdus asymbiotica; however, instead of the canonical DxD motif of GT-A type glycosyltransferases, essential for enzyme activity and divalent cation coordination, we found that a DxN motif is present in LtpM. Using UDP-glucose as sugar donor, we show that purified LtpM nevertheless exhibits glucohydrolase and autoglucosylation activity in vitro and demonstrate that PI3P binding activates LtpM's glucosyltransferase activity toward protein substrates. Substitution of the aspartate or the asparagine in the DxN motif abolished the activity of LtpM. Moreover, whereas all glycosyltransferase toxins and effectors identified so far depend on the presence of divalent cations, LtpM is active in their absence. Proteins containing LtpM-like GT domains are encoded in the genomes of other L. pneumophila isolates and species, suggesting that LtpM is the first member of a novel family of glycosyltransferase effectors employed to subvert hosts.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucosiltransferasas/metabolismo , Legionella pneumophila/enzimología , Fosfatidilinositoles/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Endosomas , Glucosiltransferasas/química , Células HeLa , Humanos , Transporte de Proteínas , Homología de Secuencia
6.
Langmuir ; 35(2): 365-371, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30565941

RESUMEN

A crucial step of exotoxin action is the attack on the membrane. Many exotoxins show an architecture following the AB model, where a binding subunit translocates an "action" subunit across a cell membrane. Atomic force microscopy is an ideal technique to study these systems because of its ability to provide structural as well as dynamic information at the same time. We report first images of toxins Photorhabdus luminescens TcdA1 and Clostridium difficile TcdB on a supported lipid bilayer. A significant amount of toxin binds to the bilayer at neutral pH in the absence of receptors. Lack of diffusion indicates that toxin particles penetrate the membrane. This observation is supported by fluorescence recovery after photobleaching measurements. We mimic endocytosis by acidification while imaging the particles over time; however, we see no large conformational change. We therefore conclude that the toxin particles we imaged in neutral conditions had already formed a pore and speculate that there is no "pre-pore" state in our imaging conditions (i.e., in the absence of receptor).


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Exotoxinas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Clostridioides difficile/química , Exotoxinas/química , Concentración de Iones de Hidrógeno , Membrana Dobles de Lípidos/química , Microscopía de Fuerza Atómica , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Photorhabdus/química , Unión Proteica , Conformación Proteica , Rodaminas/química
7.
J Biol Chem ; 292(39): 16014-16023, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28801462

RESUMEN

Ribosomal translation factors are fundamental for protein synthesis and highly conserved in all kingdoms of life. The essential eukaryotic elongation factor 1A (eEF1A) delivers aminoacyl tRNAs to the A-site of the translating 80S ribosome. Several studies have revealed that eEF1A is posttranslationally modified. Using MS analysis, site-directed mutagenesis, and X-ray structural data analysis of Saccharomyces cerevisiae eEF1A, we identified a posttranslational modification in which the α amino group of mono-l-glutamine is covalently linked to the side chain of glutamate 45 in eEF1A. The MS analysis suggested that all eEF1A molecules are modified by this glutaminylation and that this posttranslational modification occurs at all stages of yeast growth. The mutational studies revealed that this glutaminylation is not essential for the normal functions of eEF1A in S. cerevisiae However, eEF1A glutaminylation slightly reduced growth under antibiotic-induced translational stress conditions. Moreover, we identified the same posttranslational modification in eEF1A from Schizosaccharomyces pombe but not in various other eukaryotic organisms tested despite strict conservation of the Glu45 residue among these organisms. We therefore conclude that eEF1A glutaminylation is a yeast-specific posttranslational modification that appears to influence protein translation.


Asunto(s)
Glutamina/metabolismo , Modelos Moleculares , Factor 1 de Elongación Peptídica/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aminoacilación/efectos de los fármacos , Antiinfecciosos/farmacología , Secuencia Conservada , Cristalografía por Rayos X , Bases de Datos de Proteínas , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Secuencias Hélice-Asa-Hélice , Mutagénesis Sitio-Dirigida , Mutación , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/genética , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Especificidad de la Especie
8.
J Biol Chem ; 291(34): 18006-15, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27358400

RESUMEN

Protein O-mannosylation is an essential post-translational modification. It is initiated in the endoplasmic reticulum by a family of protein O-mannosyltransferases that are conserved from yeast (PMTs) to human (POMTs). The degree of functional conservation between yeast and human protein O-mannosyltransferases is uncharacterized. In bakers' yeast, the main in vivo activities are due to heteromeric Pmt1-Pmt2 and homomeric Pmt4 complexes. Here we describe an enzymatic assay that allowed us to monitor Pmt4 activity in vitro We demonstrate that detergent requirements and acceptor substrates of yeast Pmt4 are different from Pmt1-Pmt2, but resemble that of human POMTs. Furthermore, we mimicked two POMT1 amino acid exchanges (G76R and V428D) that result in severe congenital muscular dystrophies in humans, in yeast Pmt4 (I112R and I435D). In vivo and in vitro analyses showed that general features such as protein stability of the Pmt4 variants were not significantly affected, however, the mutants proved largely enzymatically inactive. Our results demonstrate functional and biochemical similarities between POMT1 and its orthologue from bakers' yeast Pmt4.


Asunto(s)
Manosiltransferasas/química , Saccharomyces cerevisiae/genética , Sustitución de Aminoácidos , Estabilidad de Enzimas , Humanos , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Mutación Missense , Proteínas de Saccharomyces cerevisiae
9.
FASEB J ; 29(7): 2789-802, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25782990

RESUMEN

The bacterial toxin Photorhabdus asymbiotica toxin (PaTox) modifies Rho proteins by tyrosine GlcNAcylation and heterotrimeric Gα proteins by deamidation. Inactivation of Rho proteins results in F-actin disassembly in host cells. Here, we analyzed the subcellular distribution of PaTox and show that the glycosyltransferase domain of PaTox associates with the negatively charged inner surface of the plasma membrane. Localization studies with site-directed mutants, liposome precipitation analysis, lipid overlay assays, and confocal time-lapse microscopy revealed that a patch of positively charged lysine and arginine residues located on helix α1 of the glycosyltransferase is essential for membrane attachment. Using a helix1 deletion mutant, we show that plasma membrane localization of PaTox is essential for cytotoxicity and proved this by substitution of helix1 by an N-terminal myristoylation signal peptide, which restored plasma membrane localization and cytotoxicity. Furthermore, we also show that the intracellular deamidase activity of PaTox depends on the presence of the membrane localization domain. Comparison of PaTox membrane-binding domain with the 4-helix-bundle membrane-binding domain of Pasteurella multocida toxin, Vibrio cholerae multifunctional autoprocessing repeats-in-toxin, and clostridial glucosylating toxins revealed similar spatial geometry and charge distribution but different structural topology, indicating convergent evolution of toxin domains for optimized host target interaction.


Asunto(s)
Toxinas Bacterianas/toxicidad , Photorhabdus/patogenicidad , Secuencia de Aminoácidos , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Genes Bacterianos , Células HeLa , Humanos , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosfolípidos/metabolismo , Photorhabdus/química , Photorhabdus/genética , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidad , Eliminación de Secuencia , Electricidad Estática , Proteínas de Unión al GTP rho/metabolismo
10.
Cell Microbiol ; 17(12): 1752-65, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26445410

RESUMEN

Mono-glycosylation of host proteins is a common mechanism by which bacterial protein toxins manipulate cellular functions of eukaryotic target host cells. Prototypic for this group of glycosyltransferase toxins are Clostridium difficile toxins A and B, which modify guanine nucleotide-binding proteins of the Rho family. However, toxin-induced glycosylation is not restricted to the Clostridia. Various types of bacterial pathogens including Escherichia coli, Yersinia, Photorhabdus and Legionella species produce glycosyltransferase toxins. Recent studies discovered novel unexpected variations in host protein targets and amino acid acceptors of toxin-catalysed glycosylation. These findings open new perspectives in toxin as well as in carbohydrate research.


Asunto(s)
Toxinas Bacterianas/metabolismo , Células Eucariotas/fisiología , Glicosiltransferasas/metabolismo , Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/patogenicidad , Interacciones Huésped-Patógeno , Células Eucariotas/efectos de los fármacos , Glicosilación , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Virulencia
11.
Curr Top Microbiol Immunol ; 376: 211-26, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23900830

RESUMEN

Legionella is a gram-negative bacterium and the causative pathogen of legionellosis-a severe pneumonia in humans. A large number of Legionella effectors interfere with numerous host cell functions, including intracellular vacuole trafficking and maturation, phospholipid metabolism, protein ubiquitination, pro-/anti-apoptotic balances or inflammatory responses. Moreover, eukaryotic protein synthesis is affected by L. pneumophila glucosyltransferases Lgt1, Lgt2, and Lgt3. Structurally, these enzymes are similar to large clostridial cytotoxins, use UDP-glucose as a co-substrate and modify a conserved serine residue (Ser-53) in elongation factor 1A (eEF1A). The ternary complex consisting of eEF1A, GTP, and aminoacylated-tRNA seems to be the substrate for Lgts. Studies with Saccharomyces cerevisiae corroborated that eEF1A is the major target responsible for Lgt-induced cytotoxic activity. In addition to Lgt proteins, Legionella produces other effector glycosyltransferase, including the modularly composed protein SetA, which displays tropism for early endosomal compartments, subverts host cell vesicle trafficking and demonstrates toxic activities toward yeast and mammalian cells. Here, our current knowledge about both groups of L. pneumophila glycosylating effectors is reviewed.


Asunto(s)
Glucosiltransferasas/fisiología , Legionella pneumophila/enzimología , Legionella pneumophila/patogenicidad , Glucosiltransferasas/química , Glicosilación , Humanos , Factor 1 de Elongación Peptídica/fisiología , Especificidad por Sustrato
12.
J Biol Chem ; 287(31): 26029-37, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22685293

RESUMEN

Legionella is a pathogenic Gram-negative bacterium that can multiply inside of eukaryotic cells. It translocates numerous bacterial effector proteins into target cells to transform host phagocytes into a niche for replication. One effector of Legionella pneumophila is the glucosyltransferase Lgt1, which modifies serine 53 in mammalian elongation factor 1A (eEF1A), resulting in inhibition of protein synthesis and cell death. Here, we demonstrate that similar to mammalian cells, Lgt1 was severely toxic when produced in yeast and effectively inhibited in vitro protein synthesis. Saccharomyces cerevisiae strains, which were deleted of endogenous eEF1A but harbored a mutant eEF1A not glucosylated by Lgt1, were resistant toward the bacterial effector. In contrast, deletion of Hbs1, which is also an in vitro substrate of the glucosyltransferase, did not influence the toxic effects of Lgt1. Serial mutagenesis in yeast showed that Phe(54), Tyr(56) and Trp(58), located immediately downstream of serine 53 of eEF1A, are essential for the function of the elongation factor. Replacement of serine 53 by glutamic acid, mimicking phosphorylation, produced a non-functional eEF1A, which failed to support growth of S. cerevisiae. Our data indicate that Lgt1-induced lethal effect in yeast depends solely on eEF1A. The region of eEF1A encompassing serine 53 plays a critical role in functioning of the elongation factor.


Asunto(s)
Proteínas Bacterianas/fisiología , Glucosiltransferasas/fisiología , Legionella pneumophila/enzimología , Factor 1 de Elongación Peptídica/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas de Unión al GTP/genética , Eliminación de Gen , Glucosiltransferasas/biosíntesis , Glucosiltransferasas/genética , Glicosilación , Proteínas HSP70 de Choque Térmico/genética , Interacciones Huésped-Patógeno , Legionella pneumophila/fisiología , Mutagénesis Sitio-Dirigida , Factor 1 de Elongación Peptídica/genética , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Fragmentos de Péptidos/química , Fenotipo , Biosíntesis de Proteínas , Proteínas Recombinantes/biosíntesis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
J Biol Chem ; 287(30): 24929-40, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22665487

RESUMEN

TpeL is a member of the family of clostridial glucosylating toxins produced by Clostridium perfringens type A, B, and C strains. In contrast to other members of this toxin family, it lacks a C-terminal polypeptide repeat domain, which is suggested to be involved in target cell binding. It was shown that the glucosyltransferase domain of TpeL modifies Ras in vitro by mono-O-glucosylation or mono-O-GlcNAcylation (Nagahama, M., Ohkubo, A., Oda, M., Kobayashi, K., Amimoto, K., Miyamoto, K., and Sakurai, J. (2011) Infect. Immun. 79, 905-910). Here we show that TpeL preferably utilizes UDP-N-acetylglucosamine (UDP-GlcNAc) as a sugar donor. Change of alanine 383 of TpeL to isoleucine turns the sugar donor preference from UDP-GlcNAc to UDP-glucose. In contrast to previous studies, we show that Rac is a poor substrate in vitro and in vivo and requires 1-2 magnitudes higher toxin concentrations for modification by TpeL. The toxin is autoproteolytically processed in the presence of inositol hexakisphosphate (InsP(6)) by an intrinsic cysteine protease domain, located next to the glucosyltransferase domain. A C-terminally extended TpeL full-length variant (TpeL1-1779) induces apoptosis in HeLa cells (most likely by mono-O-GlcNAcylation of Ras), and inhibits Ras signaling including Ras-Raf interaction and ERK activation. In addition, TpeL blocks Ras signaling in rat pheochromocytoma PC12 cells. TpeL is a glucosylating toxin, which modifies Ras and induces apoptosis in target cells without having a typical C-terminal polypeptide repeat domain.


Asunto(s)
Acetilglucosamina/metabolismo , Toxinas Bacterianas/metabolismo , Clostridium perfringens/enzimología , Glicosiltransferasas/metabolismo , Proteína Oncogénica p21(ras)/metabolismo , Proteolisis , Acetilglucosamina/genética , Animales , Apoptosis/genética , Toxinas Bacterianas/genética , Clostridium perfringens/genética , Activación Enzimática/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glicosilación , Glicosiltransferasas/genética , Células HeLa , Humanos , Proteína Oncogénica p21(ras)/genética , Células PC12 , Ratas , Azúcares de Uridina Difosfato/genética , Azúcares de Uridina Difosfato/metabolismo , Quinasas raf/genética , Quinasas raf/metabolismo
14.
Cell Microbiol ; 14(6): 852-68, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22288428

RESUMEN

Legionella pneumophila is a human pathogen causing severe pneumonia called Legionnaires' disease. Multiple Legionella effectors are type IV-secreted into the host cell to establish a specific vesicular compartment for pathogen replication. Recently, it has been reported that the Legionella effector SetA shares sequence similarity with glycosyltransferases and interferes with vesicular trafficking of host cells. Here we show that SetA possesses glycohydrolase and mono-O-glucosyltransferase activity by using UDP-glucose as a donor substrate. Whereas the catalytic activity is located at the N terminus of SetA, the C terminus (amino acids 401-644) is essential for guidance of SetA to vesicular compartments of host cells. EGFP-SetA expressed in HeLa cells localizes to early endosomes by interacting with phosphatidylinositol 3-phosphate. EGFP-SetA, transiently expressed in RAW 264.7 macrophages, associates with early phagosomes after infection with Escherichia coli and L. pneumophila. Only the combined expression of the C- and N-terminal domains induces growth defects in yeast similar to full-length SetA. The data indicate that SetA is a multidomain protein with an N-terminal glucosyltransferase domain and a C-terminal phosphatidylinositol 3-phosphate-binding domain, which guides the Legionella effector to the surface of the Legionella-containing vacuole. Both, the localization and the glucosyltransferase domains of SetA are crucial for cellular functions.


Asunto(s)
Proteínas Bacterianas/química , Glucosiltransferasas/química , Glicósido Hidrolasas/química , Legionella pneumophila/enzimología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/biosíntesis , Dominio Catalítico , Endosomas/metabolismo , Glucosa/química , Glucosiltransferasas/biosíntesis , Glicósido Hidrolasas/biosíntesis , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/química , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Hidrólisis , Cinética , Legionella pneumophila/fisiología , Ratones , Datos de Secuencia Molecular , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Saccharomyces cerevisiae , Vacuolas/microbiología , Proteínas de Unión al GTP rab5/metabolismo
15.
J Biol Chem ; 286(46): 39768-75, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21956107

RESUMEN

Protein O-mannosylation is an essential modification in fungi and mammals. It is initiated at the endoplasmic reticulum by a conserved family of dolichyl phosphate mannose-dependent protein O-mannosyltransferases (PMTs). PMTs are integral membrane proteins with two hydrophilic loops (loops 1 and 5) facing the endoplasmic reticulum lumen. Formation of dimeric PMT complexes is crucial for mannosyltransferase activity, but the direct cause is not known to date. In bakers' yeast, O-mannosylation is catalyzed largely by heterodimeric Pmt1p-Pmt2p and homodimeric Pmt4p complexes. To further characterize Pmt1p-Pmt2p complexes, we developed a photoaffinity probe based on the artificial mannosyl acceptor substrate Tyr-Ala-Thr-Ala-Val. The photoreactive probe was preferentially cross-linked to Pmt1p, and deletion of the loop 1 (but not loop 5) region abolished this interaction. Analysis of Pmt1p loop 1 mutants revealed that especially Glu-78 is crucial for binding of the photoreactive probe. Glu-78 belongs to an Asp-Glu motif that is highly conserved among PMTs. We further demonstrate that single amino acid substitutions in this motif completely abolish activity of Pmt4p complexes. In contrast, both acidic residues need to be exchanged to eliminate activity of Pmt1p-Pmt2p complexes. On the basis of our data, we propose that the loop 1 regions of dimeric complexes form part of the catalytic site.


Asunto(s)
Manosiltransferasas/química , Multimerización de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Dominio Catalítico/fisiología , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
J Biol Chem ; 286(17): 14779-86, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21385871

RESUMEN

Clostridium sordellii lethal toxin and Clostridium novyi α-toxin, which are virulence factors involved in the toxic shock and gas gangrene syndromes, are members of the family of clostridial glucosylating toxins. The toxins inactivate Rho/Ras proteins by glucosylation or attachment of GlcNAc (α-toxin). Here, we studied the activation of the autoproteolytic processing of the toxins by inositol hexakisphosphate (InsP(6)) and compared it with the processing of Clostridium difficile toxin B. In the presence of low concentrations of InsP(6) (<1 µM), toxin fragments consisting of the N-terminal glucosyltransferase (or GlcNAc-transferase) domains and the cysteine protease domains (CPDs) of C. sordellii lethal toxin, C. novyi α-toxin, and C. difficile toxin B were autocatalytically processed. The cleavage sites of lethal toxin (Leu-543) and α-toxin (Leu-548) and the catalytic cysteine residues (Cys-698 of lethal toxin and Cys-707 of α-toxin) were identified. Affinity of the CPDs for binding InsP(6) was determined by isothermal titration calorimetry. In contrast to full-length toxin B and α-toxin, autocatalytic cleavage and InsP(6) binding of full-length lethal toxin depended on low pH (pH 5) conditions. The data indicate that C. sordellii lethal toxin and C. novyi α-toxin are InsP(6)-dependently processed. However, full-length lethal toxin, but not its short toxin fragments consisting of the glucosyltransferase domain and the CPD, requires a pH-sensitive conformational change to allow binding of InsP(6) and subsequent processing of the toxin.


Asunto(s)
Toxinas Bacterianas/metabolismo , Clostridium/química , Ácido Fítico/metabolismo , Proteínas Bacterianas , Toxinas Bacterianas/química , Clostridium sordellii/química , Concentración de Iones de Hidrógeno , Fragmentos de Péptidos/farmacología , Unión Proteica , Conformación Proteica
17.
Mol Microbiol ; 76(5): 1205-21, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20398215

RESUMEN

O-mannosylation is an essential protein modification in eukaryotes. It is initiated at the endoplasmic reticulum by O-mannosyltransferases (PMT) that are evolutionary conserved from yeast to humans. The PMT family is phylogenetically classified into PMT1, PMT2 and PMT4 subfamilies, which differ in protein substrate specificity and number of genes per subfamily. In this study, we characterized for the first time the whole PMT family of a pathogenic filamentous fungus, Aspergillus fumigatus. Genome analysis showed that only one member of each subfamily is present in A. fumigatus, PMT1, PMT2 and PMT4. Despite the fact that all PMTs are transmembrane proteins with conserved peptide motifs, the phenotype of each PMT deletion mutant was very different in A. fumigatus. If disruption of PMT1 did not reveal any phenotype, deletion of PMT2 was lethal. Disruption of PMT4 resulted in abnormal mycelial growth and highly reduced conidiation associated to significant proteomic changes. The double pmt1pmt4 mutant was lethal. The single pmt4 mutant exhibited an exquisite sensitivity to echinocandins that is associated to major changes in the expression of signal transduction cascade genes. These results indicate that the PMT family members play a major role in growth, morphogenesis and viability of A. fumigatus.


Asunto(s)
Aspergillus fumigatus/enzimología , Aspergillus fumigatus/fisiología , Supervivencia Celular/fisiología , Proteínas Fúngicas/metabolismo , Isoenzimas/metabolismo , Manosiltransferasas/metabolismo , Morfogénesis/fisiología , Animales , Antifúngicos/farmacología , Aspergilosis/microbiología , Aspergillus fumigatus/citología , Aspergillus fumigatus/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Equinocandinas/farmacología , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/genética , Eliminación de Gen , Genes Fúngicos , Prueba de Complementación Genética , Humanos , Isoenzimas/clasificación , Isoenzimas/genética , Masculino , Manosiltransferasas/clasificación , Manosiltransferasas/genética , Ratones , Mutación , Micelio/metabolismo , Micelio/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Sci Adv ; 6(11): eaaz2094, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32195351

RESUMEN

We identified a glucosyltransferase (YGT) and an ADP-ribosyltransferase (YART) in Yersinia mollaretii, highly related to glucosylating toxins from Clostridium difficile, the cause of antibiotics-associated enterocolitis. Both Yersinia toxins consist of an amino-terminal enzyme domain, an autoprotease domain activated by inositol hexakisphosphate, and a carboxyl-terminal translocation domain. YGT N-acetylglucosaminylates Rab5 and Rab31 at Thr52 and Thr36, respectively, thereby inactivating the Rab proteins. YART ADP-ribosylates Rab5 and Rab31 at Gln79 and Gln64, respectively. This activates Rab proteins by inhibiting GTP hydrolysis. We determined the crystal structure of the glycosyltransferase domain of YGT (YGTG) in the presence and absence of UDP at 1.9- and 3.4-Å resolution, respectively. Thereby, we identified a previously unknown potassium ion-binding site, which explains potassium ion-dependent enhanced glycosyltransferase activity in clostridial and related toxins. Our findings exhibit a novel type of inverse regulation of Rab proteins by toxins and provide new insights into the structure-function relationship of glycosyltransferase toxins.


Asunto(s)
ADP Ribosa Transferasas , Proteínas Bacterianas , Toxinas Bacterianas , Glicosiltransferasas , Yersinia , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Cristalografía por Rayos X , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Glicosilación , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Células HeLa , Humanos , Dominios Proteicos , Uridina Difosfato/química , Uridina Difosfato/metabolismo , Yersinia/química , Yersinia/enzimología
20.
Trends Microbiol ; 16(5): 222-9, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18394902

RESUMEN

Toxins A and B, which are the major virulence factors of antibiotic-associated diarrhea and pseudomembranous colitis caused by Clostridium difficile, are the prototypes of the family of clostridial glucosylating toxins. The toxins inactivate Rho and Ras proteins by glucosylation. Recent findings on the autocatalytic processing of the toxins and analysis of the crystal structures of their domains have made a revision of the current model of their actions on the eukaryotic target cells necessary.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Proteínas Bacterianas/metabolismo , Clostridioides difficile/enzimología , Glucosiltransferasas/metabolismo , Modelos Biológicos , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA