Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(14): 7015-7020, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30894487

RESUMEN

Malaria and cryptosporidiosis, caused by apicomplexan parasites, remain major drivers of global child mortality. New drugs for the treatment of malaria and cryptosporidiosis, in particular, are of high priority; however, there are few chemically validated targets. The natural product cladosporin is active against blood- and liver-stage Plasmodium falciparum and Cryptosporidium parvum in cell-culture studies. Target deconvolution in P. falciparum has shown that cladosporin inhibits lysyl-tRNA synthetase (PfKRS1). Here, we report the identification of a series of selective inhibitors of apicomplexan KRSs. Following a biochemical screen, a small-molecule hit was identified and then optimized by using a structure-based approach, supported by structures of both PfKRS1 and C. parvum KRS (CpKRS). In vivo proof of concept was established in an SCID mouse model of malaria, after oral administration (ED90 = 1.5 mg/kg, once a day for 4 d). Furthermore, we successfully identified an opportunity for pathogen hopping based on the structural homology between PfKRS1 and CpKRS. This series of compounds inhibit CpKRS and C. parvum and Cryptosporidium hominis in culture, and our lead compound shows oral efficacy in two cryptosporidiosis mouse models. X-ray crystallography and molecular dynamics simulations have provided a model to rationalize the selectivity of our compounds for PfKRS1 and CpKRS vs. (human) HsKRS. Our work validates apicomplexan KRSs as promising targets for the development of drugs for malaria and cryptosporidiosis.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum/enzimología , Inhibidores Enzimáticos/farmacología , Lisina-ARNt Ligasa/antagonistas & inhibidores , Malaria Falciparum , Plasmodium falciparum/enzimología , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Criptosporidiosis/tratamiento farmacológico , Criptosporidiosis/enzimología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/química , Humanos , Lisina-ARNt Ligasa/metabolismo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/enzimología , Ratones SCID , Proteínas Protozoarias/metabolismo
2.
Nucleic Acids Res ; 44(21): 10423-10436, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27422871

RESUMEN

Maturation and translation of mRNA in eukaryotes requires the addition of the 7-methylguanosine cap. In vertebrates, the cap methyltransferase, RNA guanine-7 methyltransferase (RNMT), has an activating subunit, RNMT-Activating Miniprotein (RAM). Here we report the first crystal structure of the human RNMT in complex with the activation domain of RAM. A relatively unstructured and negatively charged RAM binds to a positively charged surface groove on RNMT, distal to the active site. This results in stabilisation of a RNMT lobe structure which co-evolved with RAM and is required for RAM binding. Structure-guided mutagenesis and molecular dynamics simulations reveal that RAM stabilises the structure and positioning of the RNMT lobe and the adjacent α-helix hinge, resulting in optimal positioning of helix A which contacts substrates in the active site. Using biophysical and biochemical approaches, we observe that RAM increases the recruitment of the methyl donor, AdoMet (S-adenosyl methionine), to RNMT. Thus we report the mechanism by which RAM allosterically activates RNMT, allowing it to function as a molecular rheostat for mRNA cap methylation.


Asunto(s)
Metiltransferasas/química , Metiltransferasas/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Catálisis , Dominio Catalítico , Activación Enzimática , Humanos , Espectroscopía de Resonancia Magnética , Metiltransferasas/genética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Proteínas de Unión al ARN/genética , Relación Estructura-Actividad
3.
Bioorg Med Chem ; 24(7): 1573-81, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26935942

RESUMEN

Trypanosomal phosphodiesterases B1 and B2 (TbrPDEB1 and TbrPDEB2) play an important role in the life cycle of Trypanosoma brucei, the causative parasite of human African trypanosomiasis (HAT), also known as African sleeping sickness. Knock down of both enzymes leads to cell cycle arrest and is lethal to the parasite. Recently, we reported the phenylpyridazinone, NPD-001, with low nanomolar IC50 values on both TbrPDEB1 (IC50: 4nM) and TbrPDEB2 (IC50: 3nM) (J. Infect. Dis.2012, 206, 229). In this study, we now report on the first structure activity relationships of a series of phenylpyridazinone analogs as TbrPDEB1 inhibitors. A selection of compounds was also shown to be anti-parasitic. Importantly, a good correlation between TbrPDEB1 IC50 and EC50 against the whole parasite was observed. Preliminary analysis of the SAR of selected compounds on TbrPDEB1 and human PDEs shows large differences which shows the potential for obtaining parasite selective PDE inhibitors. The results of these studies support the pharmacological validation of the Trypanosome PDEB family as novel therapeutic approach for HAT and provide as well valuable information for the design of potent TbrPDEB1 inhibitors that could be used for the treatment of this disease.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Inhibidores de Fosfodiesterasa/síntesis química , Inhibidores de Fosfodiesterasa/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Piridazinas/farmacología , Tetrazoles/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Inhibidores de Fosfodiesterasa/química , Proteínas Protozoarias/metabolismo , Piridazinas/síntesis química , Piridazinas/química , Relación Estructura-Actividad , Tetrazoles/síntesis química , Tetrazoles/química , Tripanocidas/síntesis química , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología
4.
Bioorg Med Chem Lett ; 22(3): 1448-54, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22243960

RESUMEN

Using structure-based optimization procedures on in silico hits, dibenzosuberyl- and benzoate substituted tropines were designed as ligands for acetylcholine-binding protein (AChBP). This protein is a homolog to the ligand binding domain of the nicotinic acetylcholine receptor (nAChR). Distinct SAR is observed between two AChBP species variants and between the α7 and α4ß2 nAChR subtype. The AChBP species differences are indicative of a difference in accessibility of a ligand-inducible subpocket. Hereby, we have identified a region that can be scrutinized to achieve selectivity for nicotinic receptor subtypes.


Asunto(s)
Caprilatos/química , Ácidos Dicarboxílicos/química , Diseño de Fármacos , Ligandos , Receptores Nicotínicos/química , Benzotropina/química , Proteínas Portadoras/metabolismo , Modelos Moleculares , Unión Proteica , Relación Estructura-Actividad
5.
Nat Commun ; 13(1): 5992, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220877

RESUMEN

Tuberculosis is a major global cause of both mortality and financial burden mainly in low and middle-income countries. Given the significant and ongoing rise of drug-resistant strains of Mycobacterium tuberculosis within the clinical setting, there is an urgent need for the development of new, safe and effective treatments. Here the development of a drug-like series based on a fused dihydropyrrolidino-pyrimidine scaffold is described. The series has been developed against M. tuberculosis lysyl-tRNA synthetase (LysRS) and cellular studies support this mechanism of action. DDD02049209, the lead compound, is efficacious in mouse models of acute and chronic tuberculosis and has suitable physicochemical, pharmacokinetic properties and an in vitro safety profile that supports further development. Importantly, preliminary analysis using clinical resistant strains shows no pre-existing clinical resistance towards this scaffold.


Asunto(s)
Lisina-ARNt Ligasa , Mycobacterium tuberculosis , Tuberculosis , Animales , Lisina-ARNt Ligasa/química , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/farmacología , Ratones , Mycobacterium tuberculosis/genética , Tuberculosis/tratamiento farmacológico
6.
J Med Chem ; 61(9): 3870-3888, 2018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29672041

RESUMEN

Several trypanosomatid cyclic nucleotide phosphodiesterases (PDEs) possess a unique, parasite-specific cavity near the ligand-binding region that is referred to as the P-pocket. One of these enzymes, Trypanosoma brucei PDE B1 (TbrPDEB1), is considered a drug target for the treatment of African sleeping sickness. Here, we elucidate the molecular determinants of inhibitor binding and reveal that the P-pocket is amenable to directed design. By iterative cycles of design, synthesis, and pharmacological evaluation and by elucidating the structures of inhibitor-bound TbrPDEB1, hPDE4B, and hPDE4D complexes, we have developed 4a,5,8,8a-tetrahydrophthalazinones as the first selective TbrPDEB1 inhibitor series. Two of these, 8 (NPD-008) and 9 (NPD-039), were potent ( Ki = 100 nM) TbrPDEB1 inhibitors with antitrypanosomal effects (IC50 = 5.5 and 6.7 µM, respectively). Treatment of parasites with 8 caused an increase in intracellular cyclic adenosine monophosphate (cAMP) levels and severe disruption of T. brucei cellular organization, chemically validating trypanosomal PDEs as therapeutic targets in trypanosomiasis.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , 3',5'-AMP Cíclico Fosfodiesterasas/química , Amidas/química , Amidas/farmacología , Dominio Catalítico , Concentración 50 Inhibidora , Modelos Moleculares , Terapia Molecular Dirigida , Proteínas Protozoarias/química , Relación Estructura-Actividad
7.
ACS Infect Dis ; 3(1): 34-44, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-27798837

RESUMEN

Plasmodium falciparum (Pf) prolyl-tRNA synthetase (ProRS) is one of the few chemical-genetically validated drug targets for malaria, yet highly selective inhibitors have not been described. In this paper, approximately 40,000 compounds were screened to identify compounds that selectively inhibit PfProRS enzyme activity versus Homo sapiens (Hs) ProRS. X-ray crystallography structures were solved for apo, as well as substrate- and inhibitor-bound forms of PfProRS. We identified two new inhibitors of PfProRS that bind outside the active site. These two allosteric inhibitors showed >100 times specificity for PfProRS compared to HsProRS, demonstrating this class of compounds could overcome the toxicity related to HsProRS inhibition by halofuginone and its analogues. Initial medicinal chemistry was performed on one of the two compounds, guided by the cocrystallography of the compound with PfProRS, and the results can instruct future medicinal chemistry work to optimize these promising new leads for drug development against malaria.


Asunto(s)
Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Plasmodium falciparum/enzimología , Sitios de Unión , Clonación Molecular , Descubrimiento de Drogas , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Modelos Moleculares , Plasmodium falciparum/efectos de los fármacos , Conformación Proteica , Bibliotecas de Moléculas Pequeñas
8.
J Med Chem ; 60(17): 7284-7299, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28844141

RESUMEN

Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, is the most common cause of cardiac-related deaths in endemic regions of Latin America. There is an urgent need for new safer treatments because current standard therapeutic options, benznidazole and nifurtimox, have significant side effects and are only effective in the acute phase of the infection with limited efficacy in the chronic phase. Phenotypic high content screening against the intracellular parasite in infected VERO cells was used to identify a novel hit series of 5-amino-1,2,3-triazole-4-carboxamides (ATC). Optimization of the ATC series gave improvements in potency, aqueous solubility, and metabolic stability, which combined to give significant improvements in oral exposure. Mitigation of a potential Ames and hERG liability ultimately led to two promising compounds, one of which demonstrated significant suppression of parasite burden in a mouse model of Chagas' disease.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Triazoles/química , Triazoles/uso terapéutico , Tripanocidas/química , Tripanocidas/uso terapéutico , Trypanosoma cruzi/efectos de los fármacos , Aminación , Animales , Enfermedad de Chagas/parasitología , Chlorocebus aethiops , Descubrimiento de Drogas , Femenino , Humanos , Ratones , Relación Estructura-Actividad , Triazoles/farmacocinética , Triazoles/farmacología , Tripanocidas/farmacocinética , Tripanocidas/farmacología , Células Vero
9.
J Med Chem ; 59(15): 7029-65, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26908025

RESUMEN

A systematic analysis is presented of the 220 phosphodiesterase (PDE) catalytic domain crystal structures present in the Protein Data Bank (PDB) with a focus on PDE-ligand interactions. The consistent structural alignment of 57 PDE ligand binding site residues enables the systematic analysis of PDE-ligand interaction fingerprints (IFPs), the identification of subtype-specific PDE-ligand interaction features, and the classification of ligands according to their binding modes. We illustrate how systematic mining of this phosphodiesterase structure and ligand interaction annotated (PDEStrIAn) database provides new insights into how conserved and selective PDE interaction hot spots can accommodate the large diversity of chemical scaffolds in PDE ligands. A substructure analysis of the cocrystallized PDE ligands in combination with those in the ChEMBL database provides a toolbox for scaffold hopping and ligand design. These analyses lead to an improved understanding of the structural requirements of PDE binding that will be useful in future drug discovery studies.


Asunto(s)
Diseño de Fármacos , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/química , Bases de Datos de Proteínas , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Inhibidores de Fosfodiesterasa/química , Hidrolasas Diéster Fosfóricas/metabolismo , Relación Estructura-Actividad
10.
J Biomol Screen ; 20(1): 131-40, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25231971

RESUMEN

Methods to discover biologically active small molecules include target-based and phenotypic screening approaches. One of the main difficulties in drug discovery is elucidating and exploiting the relationship between drug activity at the protein target and disease modification, a phenotypic endpoint. Fragment-based drug discovery is a target-based approach that typically involves the screening of a relatively small number of fragment-like (molecular weight <300) molecules that efficiently cover chemical space. Here, we report a fragment screening on TbrPDEB1, an essential cyclic nucleotide phosphodiesterase (PDE) from Trypanosoma brucei, and human PDE4D, an off-target, in a workflow in which fragment hits and a series of close analogs are subsequently screened for antiparasitic activity in a phenotypic panel. The phenotypic panel contained T. brucei, Trypanosoma cruzi, Leishmania infantum, and Plasmodium falciparum, the causative agents of human African trypanosomiasis (sleeping sickness), Chagas disease, leishmaniasis, and malaria, respectively, as well as MRC-5 human lung cells. This hybrid screening workflow has resulted in the discovery of various benzhydryl ethers with antiprotozoal activity and low toxicity, representing interesting starting points for further antiparasitic optimization.


Asunto(s)
Antiparasitarios/farmacología , Descubrimiento de Drogas/métodos , Pruebas de Sensibilidad Parasitaria/métodos , 3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Antiparasitarios/química , Enfermedad de Chagas/tratamiento farmacológico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Enfermedades Desatendidas/tratamiento farmacológico , Proteínas Protozoarias/antagonistas & inhibidores , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología
11.
J Med Chem ; 56(5): 2087-96, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23409953

RESUMEN

Trypanosoma brucei cyclic nucleotide phosphodiesterase B1 (TbrPDEB1) and TbrPDEB2 have recently been validated as new therapeutic targets for human African trypanosomiasis by both genetic and pharmacological means. In this study we report the crystal structure of the catalytic domain of the unliganded TbrPDEB1 and its use for the in silico screening for new TbrPDEB1 inhibitors with novel scaffolds. The TbrPDEB1 crystal structure shows the characteristic folds of human PDE enzymes but also contains the parasite-specific P-pocket found in the structures of Leishmania major PDEB1 and Trypanosoma cruzi PDEC. The unliganded TbrPDEB1 X-ray structure was subjected to a structure-based in silico screening approach that combines molecular docking simulations with a protein-ligand interaction fingerprint (IFP) scoring method. This approach identified six novel TbrPDEB1 inhibitors with IC50 values of 10-80 µM, which may be further optimized as potential selective TbrPDEB inhibitors.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Inhibidores de Fosfodiesterasa/aislamiento & purificación , 3',5'-AMP Cíclico Fosfodiesterasas/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Cristalización , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Inhibidores de Fosfodiesterasa/uso terapéutico , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Alineación de Secuencia , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/tratamiento farmacológico , Difracción de Rayos X
12.
J Med Chem ; 55(20): 8745-56, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-22963052

RESUMEN

Trypanosomal phosphodiesterases B1 and B2 (TbrPDEB1 and TbrPDEB2) play an important role in the life cycle of Trypanosoma brucei, the causative parasite of human African trypanosomiasis (HAT), also known as African sleeping sickness. We used homology modeling and docking studies to guide fragment growing into the parasite-specific P-pocket in the enzyme binding site. The resulting catechol pyrazolinones act as potent TbrPDEB1 inhibitors with IC50 values down to 49 nM. The compounds also block parasite proliferation (e.g., VUF13525 (20b): T. brucei rhodesiense IC50 = 60 nM, T. brucei brucei IC50 = 520 nM, T. cruzi = 7.6 µM), inducing a typical multiple nuclei and kinetoplast phenotype without being generally cytotoxic. The mode of action of 20b was investigated with recombinantly engineered trypanosomes expressing a cAMP-sensitive FRET sensor, confirming a dose-response related increase of intracellular cAMP levels in trypanosomes. Our findings further validate the TbrPDEB family as antitrypanosomal target.


Asunto(s)
Catecoles/síntesis química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/antagonistas & inhibidores , Pirazoles/síntesis química , Pirazolonas/síntesis química , Tetrazoles/síntesis química , Tripanocidas/síntesis química , Trypanosoma brucei brucei/efectos de los fármacos , Sitios de Unión , Catecoles/química , Catecoles/farmacología , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/química , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Pirazoles/química , Pirazoles/farmacología , Pirazolonas/química , Pirazolonas/farmacología , Relación Estructura-Actividad , Tetrazoles/química , Tetrazoles/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei rhodesiense/efectos de los fármacos , Trypanosoma brucei rhodesiense/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA