Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687605

RESUMEN

Mutations in UBA1, which are disease-defining for VEXAS syndrome, have been reported in patients diagnosed with myelodysplastic syndromes (MDS). Here, we define the prevalence and clinical associations of UBA1 mutations in a representative cohort of patients with MDS. Digital droplet PCR profiling of a selected cohort of 375 male patients lacking MDS disease-defining mutations or established WHO disease classification identified 28 patients (7%) with UBA1 p.M41T/V/L mutations. Using targeted sequencing of UBA1 in a representative MDS cohort (n=2,027), we identified an additional 27 variants in 26 patients (1%), which we classified as likely/pathogenic (n=12) and unknown significance (n=15). Among the total 40 patients with likely/pathogenic variants (2%), all were male and 63% were classified by WHO2016 as MDS-MLD/SLD. Patients had a median of one additional myeloid gene mutation, often in TET2 (n=12), DNMT3A (n=10), ASXL1 (n=3), or SF3B1 (n=3). Retrospective clinical review where possible showed that 83% (28/34) UBA1-mutant cases had VEXAS-associated diagnoses or inflammatory clinical presentation. The prevalence of UBA1-mutations in MDS patients argues for systematic screening for UBA1 in the management of MDS.

2.
Blood ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958467

RESUMEN

Myelodysplastic syndromes/neoplasms (MDS) are clonal hematologic disorders characterized by morphologic abnormalities of myeloid cells and peripheral cytopenias. While genetic abnormalities underlie the pathogenesis of these disorders and their heterogeneity, current classifications of MDS rely predominantly on morphology. We performed genomic profiling of 3,233 patients with MDS or related disorders to delineate molecular subtypes and define their clinical implications. Gene mutations, copy-number alterations (CNAs), and copy-neutral loss of heterozygosity (cnLOH) were derived from targeted sequencing of a 152-gene panel, with abnormalities identified in 91, 43, and 11% of patients, respectively. We characterized 16 molecular groups, encompassing 86% of patients, using information from 21 genes, 6 cytogenetic events, and LOH at the TP53 and TET2 loci. Two residual groups defined by negative findings (molecularly not-otherwise specified, absence of recurrent drivers) comprised 14% of patients. The groups varied in size from 0.5% to 14% of patients and were associated with distinct clinical phenotypes and outcomes. The median bone marrow blast percentage across groups ranged from 1.5 to 10%, and the median overall survival from 0.9 to 8.2 years. We validated 5 well-characterized entities, added further evidence to support 3 previously reported subsets, and described 8 novel groups. The prognostic influence of bone marrow blasts depended on the genetic subtypes. Within genetic subgroups, therapy-related MDS and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) had comparable clinical and outcome profiles to primary MDS. In conclusion, genetically-derived subgroups of MDS are clinically relevant and may inform future classification schemas and translational therapeutic research.

3.
Blood ; 141(5): 534-549, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36322930

RESUMEN

Germ line DDX41 variants have been implicated in late-onset myeloid neoplasms (MNs). Despite an increasing number of publications, many important features of DDX41-mutated MNs remain to be elucidated. Here we performed a comprehensive characterization of DDX41-mutated MNs, enrolling a total of 346 patients with DDX41 pathogenic/likely-pathogenic (P/LP) germ line variants and/or somatic mutations from 9082 MN patients, together with 525 first-degree relatives of DDX41-mutated and wild-type (WT) patients. P/LP DDX41 germ line variants explained ∼80% of known germ line predisposition to MNs in adults. These risk variants were 10-fold more enriched in Japanese MN cases (n = 4461) compared with the general population of Japan (n = 20 238). This enrichment of DDX41 risk alleles was much more prominent in male than female (20.7 vs 5.0). P/LP DDX41 variants conferred a large risk of developing MNs, which was negligible until 40 years of age but rapidly increased to 49% by 90 years of age. Patients with myelodysplastic syndromes (MDS) along with a DDX41-mutation rapidly progressed to acute myeloid leukemia (AML), which was however, confined to those having truncating variants. Comutation patterns at diagnosis and at progression to AML were substantially different between DDX41-mutated and WT cases, in which none of the comutations affected clinical outcomes. Even TP53 mutations made no exceptions and their dismal effect, including multihit allelic status, on survival was almost completely mitigated by the presence of DDX41 mutations. Finally, outcomes were not affected by the conventional risk stratifications including the revised/molecular International Prognostic Scoring System. Our findings establish that MDS with DDX41-mutation defines a unique subtype of MNs that is distinct from other MNs.


Asunto(s)
ARN Helicasas DEAD-box , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Trastornos Mieloproliferativos , Adulto , Anciano de 80 o más Años , Femenino , Humanos , Masculino , ARN Helicasas DEAD-box/genética , Células Germinativas , Leucemia Mieloide Aguda/genética , Mutación , Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/genética
4.
Blood ; 140(19): 2037-2052, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-35984907

RESUMEN

Targeting altered tumor cell metabolism might provide an attractive opportunity for patients with acute myeloid leukemia (AML). An amino acid dropout screen on primary leukemic stem cells and progenitor populations revealed a number of amino acid dependencies, of which methionine was one of the strongest. By using various metabolite rescue experiments, nuclear magnetic resonance-based metabolite quantifications and 13C-tracing, polysomal profiling, and chromatin immunoprecipitation sequencing, we identified that methionine is used predominantly for protein translation and to provide methyl groups to histones via S-adenosylmethionine for epigenetic marking. H3K36me3 was consistently the most heavily impacted mark following loss of methionine. Methionine depletion also reduced total RNA levels, enhanced apoptosis, and induced a cell cycle block. Reactive oxygen species levels were not increased following methionine depletion, and replacement of methionine with glutathione or N-acetylcysteine could not rescue phenotypes, excluding a role for methionine in controlling redox balance control in AML. Although considered to be an essential amino acid, methionine can be recycled from homocysteine. We uncovered that this is primarily performed by the enzyme methionine synthase and only when methionine availability becomes limiting. In vivo, dietary methionine starvation was not only tolerated by mice, but also significantly delayed both cell line and patient-derived AML progression. Finally, we show that inhibition of the H3K36-specific methyltransferase SETD2 phenocopies much of the cytotoxic effects of methionine depletion, providing a more targeted therapeutic approach. In conclusion, we show that methionine depletion is a vulnerability in AML that can be exploited therapeutically, and we provide mechanistic insight into how cells metabolize and recycle methionine.


Asunto(s)
Leucemia Mieloide Aguda , Metionina , Ratones , Animales , Leucemia Mieloide Aguda/patología , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/uso terapéutico , Histonas/metabolismo , Racemetionina
5.
Cytotherapy ; 26(3): 252-260, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38127030

RESUMEN

BACKGROUND AIMS: Natural killer (NK) cell transfer is a promising cellular immunotherapy for cancer. Previously, we developed a robust method to generate large NK cell numbers from CD34+ hematopoietic stem and progenitor cells (HSPCs), which exhibit strong anti-tumor activity. However, since these cells express low levels of the Fc receptor CD16a in vitro, antibody-dependent cellular cytotoxicity (ADCC) by these cells is limited. To broaden clinical applicability of our HSPC-NK cells toward less NK-sensitive malignancies, we aimed to improve ADCC through CD16a transduction. METHODS: Using wildtype and S197P mutant greater-affinity (both with V158) CD16a retroviral transgenes (i.e., a cleavable and noncleavable CD16a upon stimulation), we generated CD16a HSPC-transduced NK cells, with CD34+ cells isolated from umbilical cord blood (UCB) or peripheral blood after G-CSF stem cell mobilization (MPB). CD16a expressing NK cells were enriched using flow cytometry-based cell sorting. Subsequently, phenotypic analyses and functional assays were performed to investigate natural cytotoxicity and ADCC activity. RESULTS: Mean transduction efficiency was 34% for UCB-derived HSPCs and 20% for MPB-derived HSPCs, which was enriched by flow cytometry-based cell sorting to >90% for both conditions. Expression of the transgene remained stable during the entire NK expansion cell generation process. Proliferation and differentiation of HSPCs were not hampered by the transduction process, resulting in effectively differentiated CD56+ NK cells after 5 weeks. Activation of the HSPC-derived NK cells resulted in significant shedding of wildtype CD16a transcribed from the endogenous gene, but not of the noncleavable mutant CD16a protein expressed from the transduced construct. The mean increase of CD107+IFNγ+ expressing NK cells after inducing ADCC was tenfold in enriched noncleavable CD16a HSPC-NK cells. Killing capacity of CD16a-transduced NK cells was significantly improved after addition of a tumor-targeting antibody in tumor cell lines and primary B-cell leukemia and lymphoma cells compared to unmodified HSPC-NK cells. CONCLUSIONS: Together, these data demonstrate that the applicability of adoptive NK cell immunotherapy may be broadened to less NK-sensitive malignancies by upregulation of CD16a expression in combination with the use of tumor-targeting monoclonal antibodies.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Receptores de IgG , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Células Asesinas Naturales , Receptores Fc/metabolismo , Humanos
6.
Pathobiology ; : 1-12, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643752

RESUMEN

INTRODUCTION: Acute myeloid leukemia (AML) patients may receive hypomethylating agents such as decitabine (DAC) as part of their treatment. Not all patients respond to this therapy, and if they do, the clinical response may occur only after 3-6 courses of treatment. Hence, early biomarkers predicting response would be very useful. METHODS: We retrospectively analyzed a cohort of 22 AML patients who were treated with DAC. Histology of the bone marrow biopsy, pathogenic mutations, and methylation status were related to the treatment response. RESULTS: In 8/22 (36%) patients, an erythroid dominant response (EDR) pattern, defined as a ratio of myeloid cells/erythroid cells <1, was observed. In the remaining 14 cases, a myeloid predominance was preserved during treatment. No difference in the hypomethylating effect of DAC treatment was observed in patients with and without EDR, as global 5-methylcytosine levels dropped similarly in both groups. Mutational analysis by NGS using a panel of commonly mutated genes in AML showed that patients with an early EDR harbored on average less mutations, with U2AF1 mutations occurring more frequently, whereas RUNX1 mutations were underrepresented compared to non-EDR cases. Interestingly, the development of an EDR correlated with complete remission (7/8 cases with an EDR vs. only 2/14 cases without an EDR). CONCLUSION: We conclude that early histological bone marrow examination for the development of an EDR may be helpful to predict response in AML patients during treatment with DAC.

7.
Mol Cell ; 62(6): 848-861, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27237052

RESUMEN

Global demethylation is part of a conserved program of epigenetic reprogramming to naive pluripotency. The transition from primed hypermethylated embryonic stem cells (ESCs) to naive hypomethylated ones (serum-to-2i) is a valuable model system for epigenetic reprogramming. We present a mathematical model, which accurately predicts global DNA demethylation kinetics. Experimentally, we show that the main drivers of global demethylation are neither active mechanisms (Aicda, Tdg, and Tet1-3) nor the reduction of de novo methylation. UHRF1 protein, the essential targeting factor for DNMT1, is reduced upon transition to 2i, and so is recruitment of the maintenance methylation machinery to replication foci. Concurrently, there is global loss of H3K9me2, which is needed for chromatin binding of UHRF1. These mechanisms synergistically enforce global DNA hypomethylation in a replication-coupled fashion. Our observations establish the molecular mechanism for global demethylation in naive ESCs, which has key parallels with those operating in primordial germ cells and early embryos.


Asunto(s)
Reprogramación Celular , Metilación de ADN , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Histonas/metabolismo , Ratones , Modelos Genéticos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Factores de Tiempo , Transfección , Ubiquitina-Proteína Ligasas
8.
Cell Mol Life Sci ; 80(10): 298, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37728691

RESUMEN

Allogeneic stem cell transplantation (alloSCT) can be curative for hemato-oncology patients due to effective graft-versus-tumor immunity. However, relapse remains the major cause of treatment failure, emphasizing the need for adjuvant immunotherapies. In this regard, post-transplantation dendritic cell (DC) vaccination is a highly interesting strategy to boost graft-versus-tumor responses. Previously, we developed a clinically applicable protocol for simultaneous large-scale generation of end-stage blood DC subsets from donor-derived CD34+ stem cells, including conventional type 1 and 2 DCs (cDC1s and cDC2s), and plasmacytoid DCs (pDCs). In addition, the total cultured end-product (DC-complete vaccine), also contains non-end-stage-DCs (i.e. non-DCs). In this study, we aimed to dissect the phenotypic identity of these non-DCs and their potential immune modulatory functions on the potency of cDCs and pDCs in stimulating tumor-reactive CD8+ T and NK cell responses, in order to obtain rationale for clinical translation of our DC-complete vaccine. The non-DC compartment was heterogeneous and comprised of myeloid progenitors and (immature) granulocyte- and monocyte-like cells. Importantly, non-DCs potentiated toll-like receptor-induced DC maturation, as reflected by increased expression of co-stimulatory molecules and enhanced cDC-derived IL-12 and pDC-derived IFN-α production. Additionally, antigen-specific CD8+ T cells effectively expanded upon DC-complete vaccination in vitro and in vivo. This effect was strongly augmented by non-DCs in an antigen-independent manner. Moreover, non-DCs did not impair in vitro DC-mediated NK cell activation, degranulation nor cytotoxicity. Notably, in vivo i.p. DC-complete vaccination activated i.v. injected NK cells. Together, these data demonstrate that the non-DC compartment potentiates DC-mediated activation and expansion of antigen-specific CD8+ T cells and do not impair NK cell responses in vitro and in vivo. This underscores the rationale for further clinical translation of our CD34+-derived DC-complete vaccine in hemato-oncology patients post alloSCT.


Asunto(s)
Linfocitos T CD8-positivos , Interleucina-12 , Humanos , Células Dendríticas , Activación de Linfocitos , Antígenos CD34 , Moléculas de Adhesión Celular
9.
Blood ; 135(14): 1161-1170, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32243522

RESUMEN

Anemia is a major and currently poorly understood clinical manifestation of hematopoietic aging. Upon aging, hematopoietic clones harboring acquired leukemia-associated mutations expand and become detectable, now referred to as clonal hematopoiesis (CH). To investigate the relationship between CH and anemia of the elderly, we explored the landscape and dynamics of CH in older individuals with anemia. From the prospective, population-based Lifelines cohort (n = 167 729), we selected all individuals at least 60 years old who have anemia according to World Health Organization criteria (n = 676) and 1:1 matched control participants. Peripheral blood of 1298 individuals was analyzed for acquired mutations at a variant allele frequency (VAF) of 1% or higher in 27 driver genes. To track clonal evolution over time, we included all available follow-up samples (n = 943). CH was more frequently detected in individuals with anemia (46.6%) compared with control individuals (39.1%; P = .007). Although no differences were observed regarding commonly detected DTA mutations (DNMT3A, TET2, ASXL1) in individuals with anemia compared with control individuals, other mutations were enriched in the anemia cohort, including TP53 and SF3B1. Unlike individuals with nutrient deficiency (P = .84), individuals with anemia of chronic inflammation and unexplained anemia revealed a higher prevalence of CH (P = .035 and P = .017, respectively) compared with their matched control individuals. Follow-up analyses revealed that clones may expand and decline, generally showing only a subtle increase in VAF (mean, 0.56%) over the course of 44 months, irrespective of the presence of anemia. Specific mutations were associated with different growth rates and propensities to acquire an additional hit. In contrast to smaller clones (<5% VAF), which did not affect overall survival, larger clones were associated with increased risk for death.


Asunto(s)
Anemia/genética , Hematopoyesis , Mutación , Factores de Edad , Anciano , Envejecimiento , Anemia/epidemiología , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Estudios Prospectivos
10.
Blood ; 136(2): 157-170, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32347921

RESUMEN

The 2016 revision of the World Health Organization classification of tumors of hematopoietic and lymphoid tissues is characterized by a closer integration of morphology and molecular genetics. Notwithstanding, the myelodysplastic syndrome (MDS) with isolated del(5q) remains so far the only MDS subtype defined by a genetic abnormality. Approximately half of MDS patients carry somatic mutations in spliceosome genes, with SF3B1 being the most commonly mutated one. SF3B1 mutation identifies a condition characterized by ring sideroblasts (RS), ineffective erythropoiesis, and indolent clinical course. A large body of evidence supports recognition of SF3B1-mutant MDS as a distinct nosologic entity. To further validate this notion, we interrogated the data set of the International Working Group for the Prognosis of MDS (IWG-PM). Based on the findings of our analyses, we propose the following diagnostic criteria for SF3B1-mutant MDS: (1) cytopenia as defined by standard hematologic values, (2) somatic SF3B1 mutation, (3) morphologic dysplasia (with or without RS), and (4) bone marrow blasts <5% and peripheral blood blasts <1%. Selected concomitant genetic lesions represent exclusion criteria for the proposed entity. In patients with clonal cytopenia of undetermined significance, SF3B1 mutation is almost invariably associated with subsequent development of overt MDS with RS, suggesting that this genetic lesion might provide presumptive evidence of MDS in the setting of persistent unexplained cytopenia. Diagnosis of SF3B1-mutant MDS has considerable clinical implications in terms of risk stratification and therapeutic decision making. In fact, this condition has a relatively good prognosis and may respond to luspatercept with abolishment of the transfusion requirement.


Asunto(s)
Médula Ósea/metabolismo , Eritropoyesis , Mutación , Síndromes Mielodisplásicos , Fosfoproteínas/genética , Factores de Empalme de ARN/genética , Humanos , Síndromes Mielodisplásicos/clasificación , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Pronóstico , Medición de Riesgo
11.
Blood ; 135(5): 371-380, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-31826241

RESUMEN

Patients with acute myeloid leukemia (AML) harboring FLT3 internal tandem duplications (ITDs) have poor outcomes, in particular AML with a high (≥0.5) mutant/wild-type allelic ratio (AR). The 2017 European LeukemiaNet (ELN) recommendations defined 4 distinct FLT3-ITD genotypes based on the ITD AR and the NPM1 mutational status. In this retrospective exploratory study, we investigated the prognostic and predictive impact of the NPM1/FLT3-ITD genotypes categorized according to the 2017 ELN risk groups in patients randomized within the RATIFY trial, which evaluated the addition of midostaurin to standard chemotherapy. The 4 NPM1/FLT3-ITD genotypes differed significantly with regard to clinical and concurrent genetic features. Complete ELN risk categorization could be done in 318 of 549 trial patients with FLT3-ITD AML. Significant factors for response after 1 or 2 induction cycles were ELN risk group and white blood cell (WBC) counts; treatment with midostaurin had no influence. Overall survival (OS) differed significantly among ELN risk groups, with estimated 5-year OS probabilities of 0.63, 0.43, and 0.33 for favorable-, intermediate-, and adverse-risk groups, respectively (P < .001). A multivariate Cox model for OS using allogeneic hematopoietic cell transplantation (HCT) in first complete remission as a time-dependent variable revealed treatment with midostaurin, allogeneic HCT, ELN favorable-risk group, and lower WBC counts as significant favorable factors. In this model, there was a consistent beneficial effect of midostaurin across ELN risk groups.


Asunto(s)
Duplicación de Gen , Predisposición Genética a la Enfermedad , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Secuencias Repetidas en Tándem/genética , Tirosina Quinasa 3 Similar a fms/genética , Europa (Continente) , Femenino , Genotipo , Trasplante de Células Madre Hematopoyéticas , Humanos , Leucemia Mieloide Aguda/terapia , Masculino , Persona de Mediana Edad , Análisis Multivariante , Nucleofosmina , Pronóstico , Modelos de Riesgos Proporcionales , Factores de Riesgo , Resultado del Tratamiento
12.
Br J Haematol ; 193(4): 798-803, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33765355

RESUMEN

Splicing factor 3B subunit 1 (SF3B1) mutations define a distinct myelodysplastic syndromes (MDS) patient group with a relatively favourable disease course and high response rates to luspatercept. Few data are available on bone marrow phenotype beyond ring sideroblasts in this subgroup of patients with MDS. In the present study, we identified immunophenotypic erythroid, myelomonocyte and progenitor features associated with SF3B1 mutations. In addition, we illustrate that SF3B1-mutation type is associated with distinct immunophenotypic features, and show the impact of co-occurrence of a SF3B1 mutation and a deletion of chromosome 5q on bone marrow immunophenotype. These genotype-phenotype associations and phenotypic subtypes within SF3B1-MDS provide leads that may further refine prognostication and therapeutic strategies for this particular MDS subgroup.


Asunto(s)
Células de la Médula Ósea/inmunología , Cromosomas Humanos Par 5 , Eliminación de Gen , Inmunofenotipificación , Síndromes Mielodisplásicos , Fosfoproteínas , Factores de Empalme de ARN , Cromosomas Humanos Par 5/genética , Cromosomas Humanos Par 5/inmunología , Femenino , Humanos , Masculino , Síndromes Mielodisplásicos/clasificación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/inmunología , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/inmunología
13.
Cancer Immunol Immunother ; 70(11): 3167-3181, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33796917

RESUMEN

Allogeneic stem cell transplantation (alloSCT), following induction chemotherapy, can be curative for hemato-oncology patients due to powerful graft-versus-tumor immunity. However, disease recurrence remains the major cause of treatment failure, emphasizing the need for potent adjuvant immunotherapy. In this regard, dendritic cell (DC) vaccination is highly attractive, as DCs are the key orchestrators of innate and adaptive immunity. Natural DC subsets are postulated to be more powerful compared with monocyte-derived DCs, due to their unique functional properties and cross-talk capacity. Yet, obtaining sufficient numbers of natural DCs, particularly type 1 conventional DCs (cDC1s), is challenging due to low frequencies in human blood. We developed a clinically applicable culture protocol using donor-derived G-CSF mobilized CD34+ hematopoietic progenitor cells (HPCs) for simultaneous generation of high numbers of cDC1s, cDC2s and plasmacytoid DCs (pDCs). Transcriptomic analyses demonstrated that these ex vivo-generated DCs highly resemble their in vivo blood counterparts. In more detail, we demonstrated that the CD141+CLEG9A+ cDC1 subset exhibited key features of in vivo cDC1s, reflected by high expression of co-stimulatory molecules and release of IL-12p70 and TNF-α. Furthermore, cDC1s efficiently primed alloreactive T cells, potently cross-presented long-peptides and boosted expansion of minor histocompatibility antigen-experienced T cells. Moreover, they strongly enhanced NK cell activation, degranulation and anti-leukemic reactivity. Together, we developed a robust culture protocol to generate highly functional blood DC subsets for in vivo application as tailored adjuvant immunotherapy to boost innate and adaptive anti-tumor immunity in alloSCT patients.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Dendríticas/inmunología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Células Asesinas Naturales/inmunología , Linfocitos T/inmunología , Presentación de Antígeno/inmunología , Antígenos CD34 , Reactividad Cruzada/inmunología , Humanos , Activación de Linfocitos/inmunología
14.
Cancer Immunol Immunother ; 69(11): 2259-2273, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32504246

RESUMEN

AKT-inhibition is a promising approach to improve T cell therapies; however, its effect on CD4+ T cells is insufficiently explored. Previously, we and others showed that AKT-inhibition during ex vivo CD8+ T cell expansion facilitates the generation of polyfunctional T cells with stem cell memory-like traits. However, most therapeutic T cell products are generated from lymphocytes, containing CD4+ T cells that can affect CD8+ T cells dependent on the Th-subset. Here, we investigated the effect of AKT-inhibition on CD4+ T cells, during separate as well as total T cell expansions. Interestingly, ex vivo AKT-inhibition preserved the early memory phenotype of CD4+ T cells based on higher CD62L, CXCR4 and CCR7 expression. However, in the presence of AKT-inhibition, Th-differentiation was skewed toward more Th2-associated at the expense of Th1-associated cells. Importantly, the favorable effect of AKT-inhibition on the functionality of CD8+ T cells drastically diminished in the presence of CD4+ T cells. Moreover, also the expansion method influenced the effect of AKT-inhibition on CD8+ T cells. These findings indicate that the effect of AKT-inhibition on CD8+ T cells is dependent on cell composition and expansion strategy, where presence of CD4+ T cells as well as polyclonal stimulation impede the favorable effect of AKT-inhibition.


Asunto(s)
Bencimidazoles/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Quinoxalinas/farmacología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/inmunología , Células Cultivadas , Humanos
15.
Blood ; 131(16): 1846-1857, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29311096

RESUMEN

Therapy-related myeloid neoplasms (tMNs) are severe adverse events that can occur after treatment with autologous hematopoietic stem cell transplantation (ASCT). This study aimed to investigate the development of tMNs following ASCT at the molecular level by whole-exome sequencing (WES) and targeted deep sequencing (TDS) in sequential (pre-) tMN samples. WES identified a significantly higher number of mutations in tMNs as compared with de novo myelodysplastic syndrome (MDS) (median 27 vs 12 mutations; P = .001). The mutations found in tMNs did not carry a clear aging-signature, unlike the mutations found in de novo MDS, indicating a different mutational mechanism. In some patients, tMN mutations were identified in both myeloid and T cells, suggesting that tMNs may originate from early hematopoietic stem cells (HSCs). However, the mutational spectra of tMNs and the preceding malignancies did not overlap, excluding common ancestry for these malignancies. By use of TDS, tMN mutations were identified at low variant allele frequencies (VAFs) in transplant material in 70% of the patients with tMNs. Reconstruction of clonal patterns based on VAFs revealed that premalignant clones can be present more than 7 years preceding a tMN diagnosis, a finding that was confirmed by immunohistochemistry on bone marrow biopsies. Our results indicate that tMN development after ASCT originates in HSCs bearing (pre-)tMN mutations that are present years before disease onset and that post-ASCT treatment can influence the selection of these clones. Early detection of premalignant clones and monitoring of their evolutionary trajectory may help to predict the development of tMNs and guide early intervention in the future.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Trastornos Mieloproliferativos , Neoplasias Primarias Secundarias , Adulto , Anciano , Autoinjertos , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/etiología , Neoplasias Hematológicas/genética , Humanos , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/terapia , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/etiología , Trastornos Mieloproliferativos/genética , Neoplasias Primarias Secundarias/diagnóstico , Neoplasias Primarias Secundarias/etiología , Neoplasias Primarias Secundarias/genética , Estudios Retrospectivos
16.
Blood ; 131(2): 202-214, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29138222

RESUMEN

Combining natural killer (NK) cell adoptive transfer with hypomethylating agents (HMAs) is an attractive therapeutic approach for patients with acute myeloid leukemia (AML). However, data regarding the impact of HMAs on NK cell functionality are mostly derived from in vitro studies with high nonclinical relevant drug concentrations. In the present study, we report a comparative study of azacitidine (AZA) and decitabine (DAC) in combination with allogeneic NK cells generated from CD34+ hematopoietic stem and progenitor cells (HSPC-NK cells) in in vitro and in vivo AML models. In vitro, low-dose HMAs did not impair viability of HSPC-NK cells. Furthermore, low-dose DAC preserved HSPC-NK killing, proliferation, and interferon gamma production capacity, whereas AZA diminished their proliferation and reactivity. Importantly, we showed HMAs and HSPC-NK cells could potently work together to target AML cell lines and patient AML blasts. In vivo, both agents exerted a significant delay in AML progression in NOD/SCID/IL2Rgnull mice, but the persistence of adoptively transferred HSPC-NK cells was not affected. Infused NK cells showed sustained expression of most activating receptors, upregulated NKp44 expression, and remarkable killer cell immunoglobulin-like receptor acquisition. Most importantly, only DAC potentiated HSPC-NK cell anti-leukemic activity in vivo. Besides upregulation of NKG2D- and DNAM-1-activating ligands on AML cells, DAC enhanced messenger RNA expression of inflammatory cytokines, perforin, and TRAIL by HSPC-NK cells. In addition, treatment resulted in increased numbers of HSPC-NK cells in the bone marrow compartment, suggesting that DAC could positively modulate NK cell activity, trafficking, and tumor targeting. These data provide a rationale to explore combination therapy of adoptive HSPC-NK cells and DAC in patients with AML.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Azacitidina/uso terapéutico , Decitabina/uso terapéutico , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/trasplante , Leucemia Mieloide Aguda/terapia , Animales , Antígenos CD34/análisis , Células Cultivadas , Eliminación de Gen , Humanos , Subunidad gamma Común de Receptores de Interleucina/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones Endogámicos NOD , Ratones SCID
17.
Gynecol Oncol ; 157(3): 810-816, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268953

RESUMEN

INTRODUCTION: Adoptive cellular immunotherapy could be an interesting new treatment option for ovarian carcinoma (OC), as research has demonstrated that OC is an immunogenic disease. In particular, natural killer (NK) cells have attracted attention due to their ability to kill tumor cells without prior sensitization. The therapeutic value of allogeneic NK cells has been first observed in hematological cancers and is increasingly being explored in solid tumors. METHODS: To substantiate the rationale for NK cell therapy in OC we performed a literature search in the Pubmed database and in the international trial register clinicaltrials.gov with attention for the effect of OC on NK cell function, the effect of current treatment on NK cell biology and the evidence on the therapeutic value of NK cell therapy against OC. RESULTS: In six clinical trials only 31 OC patients have been reported that received NK cell adoptive transfer. The majority of patients reached stable disease after NK cell therapy, with a mild pattern of side effects. In patients who received repeated infusions, more complete responses are described. All reported studies investigated the intravenous infusion of NK cells. Whereas the studies that are currently recruiting, investigate intraperitoneal infusion of allogeneic NK cells. CONCLUSION: In this review the pre-clinical evidence and current trials on NK cell immunotherapy in OC patients are summarized. Furthermore, challenges that have to be overcome for NK cell adoptive therapy to have a significant impact on disease outcome are discussed.


Asunto(s)
Inmunoterapia/métodos , Células Asesinas Naturales/trasplante , Neoplasias Ováricas/terapia , Femenino , Humanos
18.
Bioinformatics ; 34(24): 4205-4212, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29945233

RESUMEN

Motivation: The application of next-generation sequencing in research and particularly in clinical routine requires valid variant calling results. However, evaluation of several commonly used tools has pointed out that not a single tool meets this requirement. False positive as well as false negative calls necessitate additional experiments and extensive manual work. Intelligent combination and output filtration of different tools could significantly improve the current situation. Results: We developed appreci8, an automatic variant calling pipeline for calling single nucleotide variants and short indels by combining and filtering the output of eight open-source variant calling tools, based on a novel artifact- and polymorphism score. Appreci8 was trained on two data sets from patients with myelodysplastic syndrome, covering 165 Illumina samples. Subsequently, appreci8's performance was tested on five independent data sets, covering 513 samples. Variation in sequencing platform, target region and disease entity was considered. All calls were validated by re-sequencing on the same platform, a different platform or expert-based review. Sensitivity of appreci8 ranged between 0.93 and 1.00, while positive predictive value ranged between 0.65 and 1.00. In all cases, appreci8 showed superior performance compared to any evaluated alternative approach. Availability and implementation: Appreci8 is freely available at https://hub.docker.com/r/wwuimi/appreci8/. Sequencing data (BAM files) of the 678 patients analyzed with appreci8 have been deposited into the NCBI Sequence Read Archive (BioProjectID: 388411; https://www.ncbi.nlm.nih.gov/bioproject/PRJNA388411). Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple , Programas Informáticos , Biología Computacional , Humanos , Síndromes Mielodisplásicos/genética
20.
Haematologica ; 104(6): 1168-1175, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30523055

RESUMEN

Monosomal karyotype confers a poor prognosis in patients with acute myeloid leukemia. Here, we determined the impact of the type of remission-induction chemotherapy and the impact of having a donor in younger acute myeloid leukemia patients with a monosomal karyotype included in two phase III trials. In the first trial patients were randomized to receive either daunorubicin, mitoxantrone, or idarubicin in addition to standard-dose cytarabine and etoposide for induction chemotherapy. In the second trial patients were randomized to standard-dose cytarabine or high-dose cytarabine induction, both with daunorubicin and etoposide. In both trials, patients who achieved a complete remission with or without complete hematologic recovery underwent allogeneic hematopoietic stem cell transplantation if they had a donor; otherwise, they underwent autologous transplantation. In comparison to patients with intermediate-risk cytogenetics without a monosomal karyotype (n=1,584) and with adverse cytogenetics without a monosomal karyotype (n=218), patients with a monosomal karyotype (n=188) were more likely not to achieve a complete remission with or without count recovery [odds ratio=2.85, 95% confidence interval (95%, CI): 2.10-3.88] and had shorter overall survival [hazard ratio, (HR)=2.44, 95% CI: 2.08-2.88]. There was no impact of the type of anthracycline or of the dose of cytarabine on outcomes in patients with a monosomal karyotype. Among monosomal karyo type patients who achieved a complete remission with or without count recovery, HLA-identical related donor availability was associated with longer survival from complete remission with or without count recovery (HR=0.59, 95% CI: 0.37-0.95). ClinicalTrials.gov identifiers: AML-10: NCT00002549; AML-12: NCT00004128.


Asunto(s)
Cariotipo Anormal , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Monosomía/genética , Adolescente , Adulto , Factores de Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Terapia Combinada , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Quimioterapia de Inducción , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Pronóstico , Análisis de Supervivencia , Trasplante Homólogo , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA