Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
Elife ; 62017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-28092268

RESUMEN

FOXC1 loss contributes to Dandy-Walker malformation (DWM), a common human cerebellar malformation. Previously, we found that complete Foxc1 loss leads to aberrations in proliferation, neuronal differentiation and migration in the embryonic mouse cerebellum (Haldipur et al., 2014). We now demonstrate that hypomorphic Foxc1 mutant mice have granule and Purkinje cell abnormalities causing subsequent disruptions in postnatal cerebellar foliation and lamination. Particularly striking is the presence of a partially formed posterior lobule which echoes the posterior vermis DW 'tail sign' observed in human imaging studies. Lineage tracing experiments in Foxc1 mutant mouse cerebella indicate that aberrant migration of granule cell progenitors destined to form the posterior-most lobule causes this unique phenotype. Analyses of rare human del chr 6p25 fetal cerebella demonstrate extensive phenotypic overlap with our Foxc1 mutant mouse models, validating our DWM models and demonstrating that many key mechanisms controlling cerebellar development are likely conserved between mouse and human.


Asunto(s)
Síndrome de Dandy-Walker/genética , Síndrome de Dandy-Walker/patología , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Animales , Linaje de la Célula , Movimiento Celular , Modelos Animales de Enfermedad , Humanos , Ratones
2.
Elife ; 32014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25513817

RESUMEN

Loss of Foxc1 is associated with Dandy-Walker malformation, the most common human cerebellar malformation characterized by cerebellar hypoplasia and an enlarged posterior fossa and fourth ventricle. Although expressed in the mouse posterior fossa mesenchyme, loss of Foxc1 non-autonomously induces a rapid and devastating decrease in embryonic cerebellar ventricular zone radial glial proliferation and concurrent increase in cerebellar neuronal differentiation. Subsequent migration of cerebellar neurons is disrupted, associated with disordered radial glial morphology. In vitro, SDF1α, a direct Foxc1 target also expressed in the head mesenchyme, acts as a cerebellar radial glial mitogen and a chemoattractant for nascent Purkinje cells. Its receptor, Cxcr4, is expressed in cerebellar radial glial cells and conditional Cxcr4 ablation with Nes-Cre mimics the Foxc1-/- cerebellar phenotype. SDF1α also rescues the Foxc1-/- phenotype. Our data emphasizes that the head mesenchyme exerts a considerable influence on early embryonic brain development and its disruption contributes to neurodevelopmental disorders in humans.


Asunto(s)
Cerebelo/embriología , Factores de Transcripción Forkhead/fisiología , Mesodermo/metabolismo , Transducción de Señal/fisiología , Animales , Diferenciación Celular , Proliferación Celular/genética , Cerebelo/citología , Quimiocina CXCL12/metabolismo , Factores de Transcripción Forkhead/genética , Ratones , Ratones Noqueados , Receptores CXCR4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA