Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Build Simul ; : 1-15, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37359831

RESUMEN

The building sector is facing a challenge in achieving carbon neutrality due to climate change and urbanization. Urban building energy modeling (UBEM) is an effective method to understand the energy use of building stocks at an urban scale and evaluate retrofit scenarios against future weather variations, supporting the implementation of carbon emission reduction policies. Currently, most studies focus on the energy performance of archetype buildings under climate change, which is hard to obtain refined results for individual buildings when scaling up to an urban area. Therefore, this study integrates future weather data with an UBEM approach to assess the impacts of climate change on the energy performance of urban areas, by taking two urban neighborhoods comprising 483 buildings in Geneva, Switzerland as case studies. In this regard, GIS datasets and Swiss building norms were collected to develop an archetype library. The building heating energy consumption was calculated by the UBEM tool-AutoBPS, which was then calibrated against annual metered data. A rapid UBEM calibration method was applied to achieve a percentage error of 2.7%. The calibrated models were then used to assess the impacts of climate change using four future weather datasets out of Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The results showed a decrease of 22%-31% and 21%-29% for heating energy consumption, an increase of 113%-173% and 95%-144% for cooling energy consumption in the two neighborhoods by 2050. The average annual heating intensity dropped from 81 kWh/m2 in the current typical climate to 57 kWh/m2 in the SSP5-8.5, while the cooling intensity rose from 12 kWh/m2 to 32 kWh/m2. The overall envelope system upgrade reduced the average heating and cooling energy consumption by 41.7% and 18.6%, respectively, in the SSP scenarios. The spatial and temporal distribution of energy consumption change can provide valuable information for future urban energy planning against climate change.

2.
Sci Total Environ ; 829: 154223, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35245539

RESUMEN

The urban form and extreme microclimate events can have an important impact on the energy performance of buildings, urban comfort and human health. State-of-the-art building energy simulations require information on the urban microclimate, but typically rely on ad-hoc numerical simulations, expensive in-situ measurements, or data from nearby weather stations. As such, they do not account for the full range of possible urban microclimate variability and findings cannot be generalized across urban morphologies. To bridge this knowledge gap, this study proposes two data-driven models to downscale climate variables from the meso to the micro scale in arbitrary urban morphologies, with a focus on extreme climate conditions. The models are based on a feedforward and a deep neural network (NN) architecture, and are trained using results from computational fluid dynamics (CFD) simulations of flow over a series of idealized but representative urban environments, spanning a realistic range of urban morphologies. Both models feature a relatively good agreement with corresponding CFD training data, with a coefficient of determination R2 = 0.91 (R2 = 0.89) and R2 = 0.94 (R2 = 0.92) for spatially-distributed wind magnitude and air temperature for the deep NN (feedforward NN). The models generalize well for unseen urban morphologies and mesoscale input data that are within the training bounds in the parameter space, with a R2 = 0.74 (R2 = 0.69) and R2 = 0.81 (R2 = 0.74) for wind magnitude and air temperature for the deep NN (feedforward NN). The accuracy and efficiency of the proposed CFD-NN models makes them well suited for the design of climate-resilient buildings at the early design stage.


Asunto(s)
Hidrodinámica , Microclima , Ciudades , Clima , Humanos , Redes Neurales de la Computación , Viento
3.
Sustain Cities Soc ; 82: 103896, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35433236

RESUMEN

Several contrasting effects are reported in the existing literature concerning the impact assessment of the COVID-19 outbreak on the use of energy in buildings. Following an in-depth literature review, we here propose a GIS-based approach, based on pre-pandemic, partial, and full lockdown scenarios, using a bottom-up engineering model to quantify these impacts. The model has been verified against measured energy data from a total number of 451 buildings in three urban neighborhoods in the Canton of Geneva, Switzerland. The accuracy of the engineering model in predicting the energy demand has been improved by 10%, in terms of the mean absolute percentage error, as a result of adopting a data-driven correction with a random forest algorithm. The obtained results show that the energy demand for space heating and cooling tended to increase by 8% and 17%, respectively, during the partial lockdown, while these numbers rose to 13% and 28% in the case of the full lockdown. The study also reveals that the introduced detailed occupancy scenarios are the key to improving the accuracy of urban building energy models (UBEMs). Finally, it is shown that the proposed GIS-based approach can be used to mitigate the expected impacts of any possible future pandemic in urban neighborhoods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA