Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circulation ; 145(4): 279-294, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34874743

RESUMEN

BACKGROUND: Multiple pharmacogenomic studies have identified the synonymous genomic variant rs7853758 (G > A, L461L) and the intronic variant rs885004 in SLC28A3 (solute carrier family 28 member 3) as statistically associated with a lower incidence of anthracycline-induced cardiotoxicity. However, the true causal variant(s), the cardioprotective mechanism of this locus, the role of SLC28A3 and other solute carrier (SLC) transporters in anthracycline-induced cardiotoxicity, and the suitability of SLC transporters as targets for cardioprotective drugs has not been investigated. METHODS: Six well-phenotyped, doxorubicin-treated pediatric patients from the original association study cohort were recruited again, and human induced pluripotent stem cell-derived cardiomyocytes were generated. Patient-specific doxorubicin-induced cardiotoxicity (DIC) was then characterized using assays of cell viability, activated caspase 3/7, and doxorubicin uptake. The role of SLC28A3 in DIC was then queried using overexpression and knockout of SLC28A3 in isogenic human-induced pluripotent stem cell-derived cardiomyocytes using a CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9). Fine-mapping of the SLC28A3 locus was then completed after SLC28A3 resequencing and an extended in silico haplotype and functional analysis. Genome editing of the potential causal variant was done using cytosine base editor. SLC28A3-AS1 overexpression was done using a lentiviral plasmid-based transduction and was validated using stranded RNA-sequencing after ribosomal RNA depletion. Drug screening was done using the Prestwick Chemical Library (n = 1200), followed by in vivo validation in mice. The effect of desipramine on doxorubicin cytotoxicity was also investigated in 8 cancer cell lines. RESULTS: Here, using the most commonly used anthracycline, doxorubicin, we demonstrate that patient-derived cardiomyocytes recapitulate the cardioprotective effect of the SLC28A3 locus and that SLC28A3 expression influences the severity of DIC. Using Nanopore-based fine-mapping and base editing, we identify a novel cardioprotective single nucleotide polymorphism, rs11140490, in the SLC28A3 locus; its effect is exerted via regulation of an antisense long noncoding RNA (SLC28A3-AS1) that overlaps with SLC28A3. Using high-throughput drug screening in patient-derived cardiomyocytes and whole organism validation in mice, we identify the SLC competitive inhibitor desipramine as protective against DIC. CONCLUSIONS: This work demonstrates the power of the human induced pluripotent stem cell model to take a single nucleotide polymorphism from a statistical association through to drug discovery, providing human cell-tested data for clinical trials to attenuate DIC.


Asunto(s)
Cardiotoxicidad/fisiopatología , Doxorrubicina/efectos adversos , Variación Genética/genética , Animales , Modelos Animales de Enfermedad , Genómica , Humanos , Masculino , Ratones
2.
Stem Cell Reports ; 18(6): 1371-1387, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37315525

RESUMEN

The nutritional requirements for human induced pluripotent stem cell (hiPSC) growth have not been extensively studied. Here, building on our prior work that established the suitable non-basal medium components for hiPSC growth, we develop a simplified basal medium consisting of just 39 components, demonstrating that many ingredients of DMEM/F12 are either not essential or are at suboptimal concentrations. This new basal medium along with the supplement, which we call BMEM, enhances the growth rate of hiPSCs over DMEM/F12-based media, supports derivation of multiple hiPSC lines, and allows differentiation to multiple lineages. hiPSCs cultured in BMEM consistently have enhanced expression of undifferentiated cell markers such as POU5F1 and NANOG, along with increased expression of markers of the primed state and reduced expression of markers of the naive state. This work describes titration of the nutritional requirements of human pluripotent cell culture and identifies that suitable nutrition enhances the pluripotent state.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Necesidades Nutricionales , Técnicas de Cultivo de Célula , Diferenciación Celular , Suplementos Dietéticos
3.
Curr Protoc Stem Cell Biol ; 53(1): e110, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32463953

RESUMEN

We have previously developed a cost-effective chemically defined medium formula for weekend-free culture of human induced pluripotent stem cells (hiPSCs), costing ∼3% of the price of commercial medium. This medium, which we termed B8, is specifically optimized for robust and fast growth of hiPSCs and for a weekend-free medium change regimen. We demonstrated that this medium is suitable for reprogramming of somatic cells into hiPSCs and for differentiation into a variety of lineages. Here, we provide a protocol for simple generation of the most cost-effective variant of this medium, along with a protocol for making Matrigel-coated plates and culturing, passaging, cryopreserving, and thawing hiPSCs. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preparation of a highly optimized, robust, and cost-effective human induced pluripotent stem cell culture medium Basic Protocol 2: Weekend-free maintenance and passaging of human induced pluripotent stem cells in B8 medium.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Medios de Cultivo , Células Cultivadas , Medios de Cultivo/química , Medios de Cultivo/economía , Humanos , Células Madre Pluripotentes Inducidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA