Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 26(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070241

RESUMEN

Lipoic acid (LA) and melatonin (MT) are pleiotropic molecules participating in plant stress resistance by modulating cellular biochemical changes, ion homeostasis, and antioxidant enzyme activities. However, the combined role of these two molecules in counteracting the detrimental impacts of salinity stress is still unknown. In the present study, we determined the effects of exogenous LA (0.5 µM), MT (1 µM) and their combination (LA + MT) on growth performance and biomass accumulation, photosynthetic pigments, enzymatic and non-enzymatic antioxidant activities, and ions homeostatic in canola (Brassica napus L.) seedlings under salinity stress (0, 100 mM) for 40 days. The results indicate that exogenous application of LA + MT improved the phenotypic growth (by 25 to 45%), root thickness (by 68%), number of later lateral roots (by 52%), root viability (by 44%), and root length (by 50%) under salinity stress. Moreover, total soluble protein, chlorophyll pigments, the concentration of superoxide dismutase (SOD), catalase peroxidase (CAT), and ascorbic peroxidase (ASA) increased with the presence of salt concentration into the growth media and then decreased with the addition of LA + MT to saline solution. Leaf protein contents and the degradation of photosynthetic pigments were lower when LA + MT treatments were added into NaCl media. The proline and phenol contents decreased in the exogenous application of LA + MT treatments more than individual LA or MT treatments under the salinity stress. The incorporation of LA or MT or a combination of LA + MT to saline solution decreased salinity-induced malondialdehyde and electrolyte leakage. In conclusion, the alteration of metabolic pathways, redox modulation, and ions homeostasis in plant tissues by the combined LA and MT application are helpful towards the adaptation of Brassica napus L. seedlings in a saline environment. The results of this study provide, for the first time, conclusive evidence about the protective role of exogenous LA + MT in canola seedlings under salinity stress.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Melatonina/farmacología , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Estrés Salino , Ácido Tióctico/farmacología , Antioxidantes/metabolismo , Biomasa , Brassica napus/metabolismo , Productos Agrícolas/metabolismo , Homeostasis , Malondialdehído/metabolismo , Minerales/metabolismo , Fenoles/metabolismo , Fotosíntesis/efectos de los fármacos , Pigmentos Biológicos/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo
2.
Physiol Mol Biol Plants ; 27(5): 1073-1087, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34092951

RESUMEN

The present study involved two pot experiments to investigate the response of mung bean to the individual or combined SO4 2- and selenate application under drought stress. A marked increment in biomass and NPK accumulation was recorded in mung bean seedlings fertilized with various SO4 2- sources, except for CuSO4. Compared to other SO4 2- fertilizers, ZnSO4 application resulted in the highest increase in growth attributes and shoot nutrient content. Further, the combined S and Se application (S + Se) significantly enhanced relative water content (16%), SPAD value (72%), photosynthetic rate (80%) and activities of catalase (79%), guaiacol peroxidase (53%) and superoxide dismutase (58%) in the leaves of water-stressed mung bean plants. Consequently, the grain yield of mung bean was markedly increased by 105% under water stress conditions. Furthermore, S + Se application considerably increased the concentrations of P (47%), K (75%), S (80%), Zn (160%), and Fe (15%) in mung bean seeds under drought stress conditions. These findings indicate that S + Se application potentially increases the nutritional quality of grain legumes by stimulating photosynthetic apparatus and antioxidative machinery under water deficit conditions. Our results could provide the basis for further experiments on cross-talk between S and Se regulatory pathways to improve the nutritional quality of food crops. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00992-6.

3.
Bull Environ Contam Toxicol ; 105(2): 270-276, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32661664

RESUMEN

Marigold (Calendula calypso) is a multipurpose ornamental plant, but its cadmium (Cd) tolerance and phytoremediation potential is unknown. The proposed study was carried out to unravel Cd partitioning, physiological and oxidative stress responses of C. calypso grown under Cd stress. Plants were grown for four months in pots having different soil Cd levels: 0, 25, 50, 75, and 100 mg kg-1 soil. Plant growth, biomass, photosynthetic pigments, leaf water contents, stomatal conductance, and membrane stability index were not decreased at 25 mg kg-1 Cd. At higher levels of Cd stress, activities of antioxidant enzymes (SOD, APX, CAT, POD) increased to mitigate H2O2 and lipid peroxidation. Cadmium uptake in plants increased with increasing soil Cd levels, and roots accumulated a greater portion of Cd, followed by shoots and flowers, respectively. On the basis of Cd accumulation and its tolerance, it was determined that C. calypso can be successfully grown for phytostabilization of Cd contaminated soils.


Asunto(s)
Biodegradación Ambiental , Cadmio/metabolismo , Calendula/fisiología , Contaminantes del Suelo/metabolismo , Antioxidantes , Biomasa , Cadmio/análisis , Peróxido de Hidrógeno , Neonicotinoides , Estrés Oxidativo , Fotosíntesis , Hojas de la Planta/química , Raíces de Plantas/química , Suelo , Contaminantes del Suelo/análisis , Tiazinas
4.
Environ Monit Assess ; 191(4): 234, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30900020

RESUMEN

Flood events around the globe have severely impaired the soil functioning resulting in compromised food security in several parts of the world. The current study was aimed to explore the impacts of floods on soil heavy metals and nutrients status at three locations; Tibbi Solgi (TS), Vinri Khosa (VK), and Noshehra West (NW-control) in the district Rajanpur of Punjab, Pakistan. TS and VK sites were under regular influence of flooding over the last many years, but no flood event was reported on NW site during the same tenure; hence, it served as control. Sampling was carried out before and after flooding on the experimental sites. Vegetation cover was monitored through remote sensing techniques. Results revealed varying effects of floods on soil heavy metals; Cd, Cr, Pb, and soil phosphorous and nitrates. Flood events increased the Cd while lowered Pb concentration at VK site; however, flooding did not influence the status of Cr in soil. Similar to the trend observed in case of Cd, soil phosphorous and nitrates were reduced after flood events. Correlation analyses of soil physicochemical properties with soil heavy metals and nutrients indicated that after flood events, soil texture and organic carbon content seem to be the major factors driving the shift in soil heavy metals and nutrient concentrations. Although pollution indices indicated a marginally low contamination levels, but as projected in empirical studies, regular flood events in the studied sites may contaminate the whole ecosystem rendering it unfit for agricultural productivity.


Asunto(s)
Monitoreo del Ambiente , Inundaciones , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Agricultura , Ecosistema , Contaminación Ambiental/estadística & datos numéricos , Nitrógeno/análisis , Pakistán , Fósforo/análisis , Suelo
5.
Environ Sci Pollut Res Int ; 30(44): 99284-99297, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37632618

RESUMEN

Food waste is one of the major sustainability issues that need to be addressed due to its negative impacts on the economy, environment, and food security. To develop food waste reduction policies on regional and global level, it is mandatory to have a clear understanding of the various factors prompting food waste at household level and the extent of the economic losses incurred by food waste. Reducing food waste can decrease household expenditure on food, freeing resources for health, education, and well-being. The current study was aimed to (1) examine the food waste behavior of the respondents and to (2) determine the level of monetary losses from food waste. To address these objectives, a questionnaire survey and sample of food waste generated during 24 h were collected from 51 households in Tehsil Kahror Pakka, District Lodhran, Punjab, Pakistan. The survey focus was on levels of food waste and respondents' knowledge and behaviors about food waste. Economic estimation of food waste was also done. In the survey, respondents from both high- and low-income households revealed that their fruit and vegetables (31%; 32%) and peel and scrap (53%; 48%) losses were higher while egg losses (4%; 4%) were lower among various food waste categories. Wanting to eat fresh food and having no time to save food were the reasons for food waste. Monetary losses from food waste (US$ 12.8/Rs. 3677.01 per capita per annum) were higher in high-income households compared to low-income households.


Asunto(s)
Alimentos , Eliminación de Residuos , Pakistán , Composición Familiar , Verduras , Pobreza , Abastecimiento de Alimentos
6.
PLoS One ; 17(4): e0265694, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35421113

RESUMEN

Indian squash (Praecitrullus fistulosus) crop faces heat and drought during its growth that is considered the most important abiotic stress in semi-arid areas. Seed priming with growth regulators enhances stress tolerance; hence, mitigates the adverse effects of unpredictable stresses due to adverse weather conditions. This two-year (2019 and 2020) study was conducted to infer the role of seed priming in improving heat tolerance of Indian squash (cultivar Sahavi) through improvement in physiological and antioxidant defense systems. Six treatments that included no priming (control), hydropriming, priming with indole acetic acid (IAA) at 100 mg L-1, salicylic acid (SA) at 50 mg L-1, ascorbic acid (AA) at 100 mg L-1 and thiourea at 500 mg L-1 each for 06 hours) were included in the study. Results revealed that priming with AA and SA significantly (P ≤ 0.05) enhanced germination (39 and 47%), germination index (57 and 58%), plant height (23 and 22%), vine length (15 and 14%), number of fruits per plant (62%), fruit weight per plant (66 and 67%), economic yield (32%), photosynthesis rate (18 and 17%), protein content (10%), proline (23%), glycine betaine (3%), malondialdehyde content (11 and 10%) and catalase activity (24%) compared to control treatment. Furthermore, seed priming with AA and SA significantly (P ≤ 0.05) shortened the mean germination time (25 and 28%) compared to the control. The results indicated that AA and SA had significant potential to mitigate adverse effects of heat stress in Indian squash. Findings from this study showed that seed priming with AA and SA promoted heat-stress tolerance and enhanced growth and productivity of Indian squash.


Asunto(s)
Antioxidantes , Semillas , Antioxidantes/metabolismo , Sequías , Ácido Salicílico/farmacología , Estrés Fisiológico
7.
Sci Rep ; 12(1): 13210, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915211

RESUMEN

Timely and accurate estimation of rice-growing areas and forecasting of production can provide crucial information for governments, planners, and decision-makers in formulating policies. While there exists studies focusing on paddy rice mapping, only few have compared multi-scale datasets performance in rice classification. Furthermore, rice mapping of large geographical areas with sufficient accuracy for planning purposes has been a challenge in Pakistan, but recent advancements in Google Earth Engine make it possible to analyze spatial and temporal variations within these areas. The study was carried out over southern Punjab (Pakistan)-a region with 380,400 hectares devoted to rice production in year 2020. Previous studies support the individual capabilities of Sentinel-2, Landsat-8, and Moderate Resolution Imaging Spectroradiometer (MODIS) for paddy rice classification. However, to our knowledge, no study has compared the efficiencies of these three datasets in rice crop classification. Thus, this study primarily focuses on comparing these satellites' data by estimating their potential in rice crop classification using accuracy assessment methods and area estimation. The overall accuracies were found to be 96% for Sentinel-2, 91.7% for Landsat-8, and 82.6% for MODIS. The F1-Scores for derived rice class were 83.8%, 75.5%, and 65.5% for Sentinel-2, Landsat-8, and MODIS, respectively. The rice estimated area corresponded relatively well with the crop statistics report provided by the Department of Agriculture, Punjab, with a mean percentage difference of less than 20% for Sentinel-2 and MODIS and 33% for Landsat-8. The outcomes of this study highlight three points; (a) Rice mapping accuracy improves with increase in spatial resolution, (b) Sentinel-2 efficiently differentiated individual farm level paddy fields while Landsat-8 was not able to do so, and lastly (c) Increase in rice cultivated area was observed using satellite images compared to the government provided statistics.


Asunto(s)
Oryza , Agricultura , Pakistán , Imágenes Satelitales
8.
Saudi J Biol Sci ; 28(4): 2291-2300, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33935567

RESUMEN

To assess comparative losses of Trianthema portulacastrum (HP) relative to other weeds, the experiment was set during consecutive summer seasons 2018 and 2019 at the Research Farm MNS-University of Agriculture, Multan, Pakistan. Experiment consisted three replications which were laid out under randomized complete block design. Experiment consisted of ten treatments viz: weeds free (whole season), HP free till 20 Days after emergence (DAE), HP free till 40 DAE, HP free till 60 DAE, all weeds free 20 DAE, all weeds free 40 DAE, all weeds free 60 DAE, weedy check (all weeds), weedy check except HP and weedy check containing only HP. During 2018 in all weeds weedy check, maximum HP relative density (33.33%) was observed while in 2019, plot where weeds were controlled from growing till 20 DAE showed (80%) relative density at 30 DAE. HP maximum frequency (66.67%, 77.78%) and relative frequency (66%, 100%) was recorded at 45 DAE in plots where HP was kept controlled till 20 DAE and all weeds kept controlled till 20 DAE, respectively. Maximum number of grains per cob (738, 700.68), 1000 grain weight (306.66, 271.51 g) and grain yield (6150, 8015 kg hec-1) were recorded in plots which were kept all weed free till 60 DAE. As the competition period of weeds increased over 40 DAE, it substantially reduced yield of maize. Keeping the plots HP free till 40 DAE in the maize fields with HP as the major dominating weed, likely increase in maize grain yield is up to 30% compared to the fields where HP left un attended throughout the growing season. However, if maize field is infested with a mix of weeds with more than one dominating weeds including HP, compared to weedy situation the whole season, 30% higher grain yield can be obtained if all weeds are kept controlled till 40 DAE. Hence it can be concluded that whether the farmers face heavy HP infestation only or the mix of weeds as dominating weeds, in either case farmer should control weeds within first 40 days in maize field for better grain yield.

9.
PLoS One ; 15(8): e0231805, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760118

RESUMEN

Boron (B) is required during all growth stages of cotton crop, especially during boll formation. However, Typic Haplocambid soils of cotton growing belt in Pakistan are B-deficient, which results in low yield and economic returns. Foliar application of B improves cotton productivity; however, information is limited on the role of soil applied B in improving cotton growth and yield. The current study investigated the role of soil applied B in improving growth, yield and fiber quality of cotton crop. Five different B doses (i.e., 0.00, 2.60, 5.52, 7.78 and 10.04 mg kg-1 of soil) and two cotton cultivars (i.e., CIM-600 and CIM-616) were included in the study. Soil applied B (2.60 mg kg-1) significantly improved growth, yield, physiological parameters and fiber quality, while 10.04 mg kg-1 application improved B distribution in roots, seeds, leaves and stalks. Significant improvement was noted in plant height (12%), leaf area (3%), number of bolls (48%), boll size (59%), boll weight (52%), seed cotton yield (52%), photosynthesis (50%), transpiration rate (10%), stomatal conductance (37%) and water use efficiency (44%) of CIM-600 with 2.60 mg kg-1 compared to control treatment of CIM-616. Similarly, B accumulation in roots, seeds, leaves and stalk of CIM-600 was improved by 76, 41, 86 and 70%, respectively compared to control treatment. The application of 2.60 mg kg-1 significantly improved ginning out turn (6%), staple length (3.5%), fiber fineness (17%) and fiber strength (5%) than no B application. The results indicated that cultivar CIM-600 had higher ginning out turn (1.5%), staple length (5.4%), fiber fineness (15.5%) and fiber strength (1.8%) than CIM-616. In crux, 2.60 mg kg-1 soil B application improved growth, yield, physiological and fiber quality traits of cotton cultivar CIM-600. Therefore, cultivar CIM-600 and 2.60 mg kg-1 soil B application is recommended for higher yield and productivity.


Asunto(s)
Boro/metabolismo , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Biomasa , Fibra de Algodón/análisis , Fertilizantes , Pakistán , Fotosíntesis , Hojas de la Planta/química , Raíces de Plantas/química , Semillas/química , Suelo/química , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA