Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Molecules ; 29(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38792101

RESUMEN

Chemokines, also known as chemotactic cytokines, stimulate the migration of immune cells. These molecules play a key role in the pathogenesis of inflammation leading to atherosclerosis, neurodegenerative disorders, rheumatoid arthritis, insulin-resistant diabetes, and cancer. Moreover, they take part in inflammatory bowel disease (IBD). The main objective of our research was to determine the activity of methyl-derivatives of flavanone, namely, 2'-methylflavanone (5B), 3'-methylflavanone (6B), 4'-methylflavanone (7B), and 6-methylflavanone (8B), on the releasing of selected cytokines by RAW264.7 macrophages activated by LPS. We determined the concentration of chemokines belonging to the CC chemokine family, namely, MCP-1, MIP-1ß, RANTES, and eotaxin, using the Bio-Plex Magnetic Luminex Assay and the Bio-PlexTM 200 System. Among the tested compounds, only 5B and 6B had the strongest effect on inhibiting the examined chemokines' release by macrophages. Therefore, 5B and 6B appear to be potentially useful in the prevention of diseases associated with the inflammatory process.


Asunto(s)
Quimiocina CCL11 , Quimiocina CCL2 , Quimiocina CCL5 , Flavanonas , Macrófagos , Animales , Ratones , Células RAW 264.7 , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Flavanonas/farmacología , Flavanonas/química , Quimiocina CCL11/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Quimiocina CCL4/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos
2.
Molecules ; 28(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067567

RESUMEN

Inflammation plays an important role in the immune defense against injury and infection agents. However, the inflammatory chronic process may lead to neurodegenerative diseases, atherosclerosis, inflammatory bowel diseases, or cancer. Flavanones present in citrus fruits exhibit biological activities, including anti-oxidative and anti-inflammatory properties. The beneficial effects of flavanones have been found based on in vitro cell cultures and animal studies. A suitable in vitro model for studying the inflammatory process are macrophages (RAW264.7 cell line) because, after stimulation using lipopolysaccharide (LPS), they release inflammatory cytokines involved in the immune response. We determined the nitrite concentration in the macrophage cell culture and detected ROS using chemiluminescence. Additionally, we measured the production of selected cytokines using the Bio-Plex Magnetic Luminex Assay and the Bio-PlexTM 200 System. For the first time, we have shown that methyl derivatives of flavanone inhibit NO and chemiluminescence generated via LPS-stimulated macrophages. Moreover, the tested compounds at 1-20 µM dose-dependently modulate proinflammatory cytokine production (IL-1ß, IL-6, IL-12p40, IL-12p70, and TNF-α) in stimulated RAW264.7 cells. The 2'-methylflavanone (5B) and the 3'-methylflavanone (6B) possess the strongest anti-inflammatory activity among all the tested flavanone derivatives. These compounds reduce the concentration of IL-6, IL-12p40, and IL12p70 compared to the core flavanone structure. Moreover, 2'-methylflavanone reduces TNF-α, and 3'-methylflavanone reduces IL-1ß secreted by RAW264.7 cells.


Asunto(s)
Flavanonas , Factor de Necrosis Tumoral alfa , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Subunidad p40 de la Interleucina-12 , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Flavanonas/farmacología , Flavanonas/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Óxido Nítrico/metabolismo
3.
Int J Mol Sci ; 18(8)2017 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-28758908

RESUMEN

Numerous data suggest that an increase of cancer stem cells (CSCs) in tumor mass can be the reason for failure of conventional therapies because of their resistance. CD44+/CD24- cells are a putative cancer stem cells subpopulation in prostate cancer. TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is an activator of apoptosis in tumor cells. However, some tumors are TRAIL-resistant. Cancer cells can be re-sensitized to TRAIL induced apoptosis by a combination of TRAIL and taxanes. The aim of this work was to analyze the enhancement of the anticancer effect of TRAIL by paclitaxel, cabazitaxel and docetaxel in the whole population of PC3 and DU145 prostate cancer cells, but also in CD44+/CD24- prostate cancer stem cells. We examined the apoptotic effect of TRAIL and taxanes using flow cytometry and Annexin-V-PE staining. The co-treatment with taxanes and TRAIL enhanced significantly the apoptosis in CD44+/CD24- cells only in PC3 cell line but not in DU145 cells. We discovered also that taxanes can increase the expression of death receptor TRAIL-R2 in PC3 prostate cancer cells. The results of our study show that treatment with paclitaxel, cabazitaxel and docetaxel is able to enhance the apoptosis induced by TRAIL even in prostate cancer stem cells.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias de la Próstata/metabolismo , Humanos , Masculino , Células Madre Neoplásicas/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología
4.
Int J Mol Sci ; 18(6)2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28587286

RESUMEN

TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) was identified as a powerful activator of apoptosis in tumor cells and one of the most promising candidates for cancer therapy with no toxicity against normal tissues. However, many tumor cells are resistant to TRAIL-induced apoptosis. The aim of this work was to analyze the improvement of the anticancer effect of rhsTRAIL (recombinant human soluble TRAIL) by nine flavones: 5-Hydroxyflavone, 6-Hydroxyflavone, 7-Hydroxyflavone and their new synthetic derivatives 5-acetoxyflavone, 5-butyryloxyflavone, 6-acetoxyflavone, 6-butyryloxyflavone, 7-acetoxyflavone and 7-butyryloxyflavone. We examined the cytotoxic and apoptotic effects of rhsTRAIL enhanced by novel structurally-related flavones on SW480 and SW620 colon cancer cells using the3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test, the lactate dehydrogenase assay and annexin V-FITC fluorescence staining. We observed a slight difference in the activities of the flavones that was dependent on their chemical structure. Our study indicates that all nine flavones significantly augment cell death by rhsTRAIL (cytotoxicity range 36.8 ± 1.7%-91.4 ± 1.7%; apoptosis increase of 33.0 ± 0.7%-78.5 ± 0.9%). Our study demonstrates the potential use of tested flavones in TRAIL-based anticancer therapy and prevention.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Flavonas/química , Flavonas/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Línea Celular Tumoral , Neoplasias del Colon/patología , Sinergismo Farmacológico , Humanos , Proteínas Recombinantes/farmacología
5.
Int J Mol Sci ; 17(6)2016 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-27338375

RESUMEN

TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is an endogenous ligand, which plays role in immune surveillance and anti-tumor immunity. It has ability to selectively kill tumor cells showing no toxicity to normal cells. We tested the apoptotic and cytotoxic activities of xanthohumol, a prenylated chalcone found in Humulus lupulus on androgen-sensitive human prostate adenocarcinoma cells (LNCaP) in combination with TRAIL. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction assay (MTT) and lactate dehydrogenase assay (LDH). The expression of death receptors (DR4/TRAIL-R1 and DR5/TRAIL-R2) and apoptosis were detected using flow cytometry. We examined mitochondrial membrane potential (ΔΨm) by DePsipher reagent using fluorescence microscopy. The intracellular expression of proteins was evaluated by Western blotting. Our study showed that xanthohumol enhanced cytotoxic and apoptotic effects of TRAIL. The tested compounds activated caspases-3, -8, -9, Bid, and increased the expression of Bax. They also decreased expression of Bcl-xL and decreased mitochondrial membrane potential, while the expression of death receptors was not changed. The findings suggest that xanthohumol is a compound of potential use in chemoprevention of prostate cancer due to its sensitization of cancer cells to TRAIL-mediated apoptosis.


Asunto(s)
Adenocarcinoma/metabolismo , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Flavonoides/toxicidad , Extractos Vegetales/toxicidad , Propiofenonas/toxicidad , Neoplasias de la Próstata/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Flavonoides/farmacología , Humanos , Humulus/química , Ligandos , Masculino , Extractos Vegetales/farmacología , Propiofenonas/farmacología , Receptores de Muerte Celular/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
6.
Int J Mol Sci ; 16(11): 27433-49, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26593898

RESUMEN

Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.


Asunto(s)
Células Madre Neoplásicas/metabolismo , Neoplasias de la Próstata/etiología , Neoplasias de la Próstata/metabolismo , Animales , Biomarcadores , Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Transducción de Señal , Nicho de Células Madre
7.
Life (Basel) ; 13(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36836951

RESUMEN

TRAIL (Tumor necrosis factor-Related Apoptosis-Inducing Ligand) has the ability to selectively kill cancer cells without being toxic to normal cells. This endogenous ligand plays an important role in surveillance and anti-tumor immunity. However, numerous tumor cells are resistant to TRAIL-induced apoptosis. In this study, the apoptotic effect of santin in combination with TRAIL on colon cancer cells was examined. Flow cytometry was used to detect the apoptosis and expression of death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). Mitochondrial membrane potential (ΔΨm) was evaluated by DePsipher staining with the use of fluorescence microscopy. We have shown for the first time that flavonoid santin synergizes with TRAIL to induce apoptosis in colon cancer cells. Santin induced TRAIL-mediated apoptosis through increased expression of death receptors TRAIL-R1 and TRAIL-R2 and augmented disruption of the mitochondrial membrane in SW480 and SW620 cancer cells. The obtained data may indicate the potential role of santin in colon cancer chemoprevention through the enhancement of TRAIL-mediated apoptosis.

8.
Int J Mol Sci ; 13(11): 15343-59, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23203129

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells without toxicity to normal cells. TRAIL binds to death receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) expressed on cancer cell surface and activates apoptotic pathways. Endogenous TRAIL plays an important role in immune surveillance and defense against cancer cells. However, as more tumor cells are reported to be resistant to TRAIL mediated death, it is important to search for and develop new strategies to overcome this resistance. Chalcones can sensitize cancer cells to TRAIL-induced apoptosis. We examined the cytotoxic and apoptotic effects of TRAIL in combination with four chalcones: chalcone, isobavachalcone, licochalcone A and xanthohumol on HeLa cancer cells. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptor expression was analyzed using flow cytometry. The decreased expression of death receptors in cancer cells may be the cause of TRAIL-resistance. Chalcones enhance TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2. Our study has indicated that chalcones augment the antitumor activity of TRAIL and confirm their cancer chemopreventive properties.


Asunto(s)
Apoptosis/efectos de los fármacos , Chalcona/farmacología , Neoplasias/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/antagonistas & inhibidores , Línea Celular Tumoral , Chalcona/toxicidad , Sinergismo Farmacológico , Células HeLa , Humanos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/toxicidad
9.
Molecules ; 17(6): 6449-64, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22643355

RESUMEN

Coumarins are a very common type of secondary plant metabolites with a broad spectrum of biological activities. Psoralidin is a naturally occurring furanocoumarin isolated from Psoralea corylifolia possessing anticancer and chemopreventive properties. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in cancer cells with no toxicity toward normal tissues. Endogenous TRAIL plays an important role in immune surveillance and defence against cancer cells. Coumarins can modulate TRAIL-mediated apoptosis in cancer cells. We examined the cytotoxic and apoptotic activities of psoralidin in combination with TRAIL on HeLa cancer cells. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected using annexin V-FITC staining and mitochondrial membrane potential was evaluated using DePsipher staining by fluorescence microscopy. Death receptor (TRAIL-R1/DR4 and TRAIL-R2/DR5) expression was analyzed using flow cytometry. Psoralidin enhanced TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2 death receptor and depolarization of mitochondrial membrane potential. Our study indicated that psoralidin augmented the anticancer effects of TRAIL and confirmed a potential use of coumarins in cancer chemoprevention.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Benzofuranos/farmacología , Cumarinas/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/química , Apoptosis/efectos de los fármacos , Benzofuranos/química , Cumarinas/química , Sinergismo Farmacológico , Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Receptores de Muerte Celular/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/química
10.
Molecules ; 17(10): 11693-711, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23027370

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered as the most promising anticancer agent in the TNF superfamily because of its selective cytotoxicity against tumor cells versus normal primary cells. However, as more tumor cells are reported to be resistant to TRAIL-mediated death, it is important to develop new therapeutic strategies to overcome this resistance. Flavonoids have been shown to sensitize cancer cells to TRAIL-induced apoptosis. The aim of this study was to examine the cytotoxic and apoptotic activities of TRAIL on HeLa cancer cells in combination with two synthetic compounds: 6-hydroxyflavanone (6-HF) and its derivative 6-propionoxy-flavanone (6-PF) and to determine the mechanism by which the flavanones overcome the TRAIL-resistance. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected by annexin V-FITC fluorescence staining in flow cytometry and microscopy. Death receptor (TRAIL-R1/DR4 and TRAIL-R2/DR5) expression were analysed using flow cytometry. Mitochondrial membrane potential was evaluated using DePsipher staining by fluorescence microscopy. The synthetic flavanones enhanced TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2 death receptor and reduction of mitochondrial membrane potential. Our study indicates that the 6-HF and 6-PF augmented the anticancer effects of TRAIL and confirm a potential use of flavanones in TRAIL-based anticancer therapy and prevention.


Asunto(s)
Antineoplásicos/farmacología , Flavanonas/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Flavanonas/síntesis química , Flavanonas/toxicidad , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Receptores de Muerte Celular/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Transducción de Señal/efectos de los fármacos , Ligando Inductor de Apoptosis Relacionado con TNF/toxicidad
11.
Integr Cancer Ther ; 19: 1534735420918931, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508149

RESUMEN

The aim of this study was to measure the secretion of interleukin (IL)-8 and -10 during an elicited immune response following sublethal doses of hypericin-mediated photodynamic therapy (HY-PDT) in experimental models of residual colon cancer cells in vitro. Investigations were performed on the cancer cell lines SW480 and SW620. Each cell line was exposed to 3 different concentrations of the photosensitizer HY and various doses of irradiation. The cell metabolic activity using an MTT assay was performed and then the measurement of IL-8 and IL-10 secretion was achieved using the Bio-Plex ProTMAssay. There was a statistically significant amplification of IL-8 secretion during HY-PDT in the SW620 cell line (at 1 J/cm2: P = .01, 5 J/cm2: P = .002, and 10 J/cm2: P = .025) and a statistically significant decrease in IL-8 during HY-PDT in the SW480 cell line (at 1 J/cm2: P = .05, 5 J/cm2: P = .035, and 10 J/cm2: P = .035). No statistically significant differences in IL-10 concentration were found following HY-PDT in the SW480 (at 1 J/cm2: P > .4, 5 J/cm2: P = .1, and 10 J/cm2: P = .075) or in the SW620 cell line (at 1 J/cm2: P > .4, 5 J/cm2: P > .4, and 10 J/cm2: P > .4). HY-PDT can both eliminate and control a primary tumor via cytotoxic effects, and at sublethal doses, it can affect IL release by colon cancer cells. In this experiment, this influence depended on the level of tumor cell metastatic activity.


Asunto(s)
Neoplasias del Colon , Fotoquimioterapia , Antracenos , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Neoplasias del Colon/tratamiento farmacológico , Humanos , Interleucina-8/uso terapéutico , Perileno/análogos & derivados
12.
Artículo en Inglés | MEDLINE | ID: mdl-24324518

RESUMEN

Propolis possesses chemopreventive properties through direct anticancer and indirect immunomodulatory activities. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) plays a significant role in immunosurveillance and defense against cancer cells. TRAIL triggers apoptosis upon binding to TRAIL-R1 (DR4) and TRAIL-R2 (DR5) death receptors expressed on cancer cell surface. The activation of TRAIL apoptotic signaling is considered an attractive option for cancer prevention. However, as more tumor cells are reported to be resistant to TRAIL-mediated death, it is important to develop new strategies to overcome this resistance. The aim of this study was to investigate the chemical composition and proapoptotic mechanism of ethanolic extract of Polish propolis (EEP-P) against cancer cells. The identification and quantification of phenolic compounds in propolis extract were performed using HPLC-DAD and UPLC-Q-TOF-MS methods. TRAIL-resistant LNCaP prostate cancer cells were treated with EEP-P and TRAIL. Cytotoxicity was measured by MTT and LDH assays. Apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptors expression was analyzed using flow cytometry. Pinobanksin, chrysin, methoxyflavanone, p-coumaric acid, ferulic acid and caffeic acid were the main phenolics found in EEP-P. Propolis sensitized LNCaP cells through upregulation of TRAIL-R2. These results suggest that EEP-P supports TRAIL-mediated immunochemoprevention in prostate cancer cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA