Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Rep ; 40(9): 1647-1663, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34215912

RESUMEN

KEY MESSAGE: AIL7 over-expression modulates fatty acid biosynthesis and triacylglycerol accumulation in Arabidopsis developing seeds through the transcriptional regulation of associated genes. Seed fatty acids (FAs) and triacylglycerol (TAG) contribute to many functions in plants, and seed lipids have broad food, feed and industrial applications. As a result, an enormous amount of attention has been dedicated towards uncovering the regulatory cascade responsible for the fine-tuning of the lipid biosynthetic pathway in seeds, which is regulated in part through the action of LEAFY COTYLEDON1, ABSCISSIC ACID INSENSITIVE 3, FUSCA3 and LEC2 (LAFL) transcription factors. Although AINTEGUMENTA-LIKE 7 (AIL7) is involved in meristematic function and shoot phyllotaxy, its effect in the context of lipid biosynthesis has yet to be assessed. Here, we generated AIL7 seed-specific over-expression lines and found that they exhibited significant alterations in FA composition and decreased total lipid accumulation in seeds. Seeds and seedlings from transgenic lines also exhibited morphological deviations compared to wild type. Correspondingly, RNA-Seq analysis demonstrated that the expression of many genes related to FA biosynthesis and TAG breakdown were significantly altered in developing siliques from transgenic lines compared to wild-type plants. The seed-specific over-expression of AIL7 also altered the expression profiles of many genes related to starch metabolism, photosynthesis and stress response, suggesting further roles for AIL7 in plants. These findings not only advance our understanding of the lipid biosynthetic pathway in seeds, but also provide evidence for additional functions of AIL7, which could prove valuable in downstream breeding and/or metabolic engineering endeavors.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Ácidos Grasos/biosíntesis , Semillas/metabolismo , Factores de Transcripción/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Ácidos Grasos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Almidón/genética , Almidón/metabolismo , Factores de Transcripción/metabolismo , Triglicéridos/metabolismo
2.
Plant Cell Rep ; 39(7): 953-969, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32314045

RESUMEN

KEY MESSAGE: Seed-specific down-regulation of AtCESA1 and AtCESA9, which encode cellulose synthase subunits, differentially affects seed storage compound accumulation in Arabidopsis. High amounts of cellulose can negatively affect crop seed quality, and, therefore, diverting carbon partitioning from cellulose to oil, protein and/or starch via molecular breeding may improve seed quality. To determine the effect of seed cellulose content reduction on levels of storage compounds, Arabidopsis thaliana CELLULOSE SYNTHASE1 (AtCESA1) and AtCESA9 genes, which both encode cellulose synthase subunits, were individually down-regulated using seed-specific intron-spliced hairpin RNA (hpRNAi) constructs. The selected seed-specific AtCESA1 and AtCESA9 Arabidopsis RNAi lines displayed reduced cellulose contents in seeds, and exhibited no obvious visual phenotypic growth defects with the exception of a minor effect on early root development in AtCESA1 RNAi seedlings and early hypocotyl elongation in the dark in both types of RNAi line. The seed-specific down-regulation of AtCESA9 resulted in a reduction in seed weight compared to empty vector controls, which was not observed in AtCESA1 RNAi lines. In terms of effects on carbon partitioning, AtCESA1 and AtCESA9 RNAi lines exhibited distinct effects. The down-regulation of AtCESA1 led to a ~ 3% relative increase in seed protein content (P = 0.04) and a ~ 3% relative decrease in oil content (P = 0.02), but caused no alteration in soluble glucose levels. On the contrary, AtCESA9 RNAi lines did not display a significant reduction in seed oil, protein or soluble glucose content. Taken together, our results indicate that the seed-specific down-regulation of AtCESA1 causes alterations in seed storage compound accumulation, while the effect of AtCESA9 on carbon partitioning is absent or minor in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Carbono/metabolismo , Celulosa/metabolismo , Regulación hacia Abajo , Glucosiltransferasas/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosa/metabolismo , Glucosiltransferasas/genética , Homocigoto , Hipocótilo/anatomía & histología , Especificidad de Órganos , Fenotipo , Aceites de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Interferencia de ARN , Semillas/enzimología , Solubilidad , Almidón/metabolismo
3.
Front Plant Sci ; 13: 799142, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251078

RESUMEN

Clubroot, caused by the obligate parasite Plasmodiophora brassicae, is one of the most devastating diseases of canola (Brassica napus) in Canada. The identification of novel genes that contribute to clubroot resistance is important for the sustainable management of clubroot, as these genes may be used in the development of resistant canola cultivars. Phospholipase As (PLAs) play important roles in plant defense signaling and stress tolerance, and thus are attractive targets for crop breeding. However, since canola is an allopolyploid and has multiple copies of each PLA gene, it is time-consuming to test the functions of PLAs directly in this crop. In contrast, the model plant Arabidopsis thaliana has a simpler genetic background and only one copy of each PLA. Therefore, it would be reasonable and faster to validate the potential utility of PLA genes in Arabidopsis first. In this study, we identified seven homozygous atpla knockout/knockdown mutants of Arabidopsis, and tested their performance following inoculation with P. brassicae. Four mutants (pla1-iiα, pla1-iγ3, pla1-iii, ppla-iiiß, ppla-iiiδ) developed more severe clubroot than the wild-type, suggesting increased susceptibility to P. brassicae. The homologs of these Arabidopsis PLAs (AtPLAs) in B. napus (BnPLAs) were identified through Blast searches and phylogenic analysis. Expression of the BnPLAs was subsequently examined in transcriptomic datasets generated from canola infected by P. brassicae, and promising candidates for further characterization identified.

4.
Lipids ; 55(5): 495-512, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32856292

RESUMEN

A continuous rise in demand for vegetable oils, which comprise mainly the storage lipid triacylglycerol, is fueling a surge in research efforts to increase seed oil content and improve fatty acid composition in oilseed crops. Progress in this area has been achieved using both conventional breeding and transgenic approaches to date. However, further advancements using traditional breeding methods will be complicated by the polyploid nature of many oilseed crops and associated time constraints, while public perception and the prohibitive cost of regulatory processes hinders the commercialization of transgenic oilseed crops. As such, genome editing using CRISPR/Cas is emerging as a breakthrough breeding tool that could provide a platform to keep pace with escalating demand while potentially minimizing regulatory burden. In this review, we discuss the technology itself and progress that has been made thus far with respect to its use in oilseed crops to improve seed oil content and quality. Furthermore, we examine a number of genes that may provide ideal targets for genome editing in this context, as well as new CRISPR-related tools that have the potential to be applied to oilseed plants and may allow additional gains to be made in the future.


Asunto(s)
Lípidos/genética , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Triglicéridos/genética , Sistemas CRISPR-Cas/genética , Edición Génica/tendencias , Humanos , Fitomejoramiento , Aceites de Plantas/química , Plantas Modificadas Genéticamente/metabolismo , Semillas/química , Semillas/metabolismo , Triglicéridos/metabolismo
5.
Lipids ; 53(5): 469-480, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29989678

RESUMEN

Acyl-lipids such as intracellular phospholipids, galactolipids, sphingolipids, and surface lipids play a crucial role in plant cells by serving as major components of cellular membranes, seed storage oils, and extracellular lipids such as cutin and suberin. Plant lipids are also widely used to make food, renewable biomaterials, and fuels. As such, enormous efforts have been made to uncover the specific roles of different genes and enzymes involved in lipid biosynthetic pathways over the last few decades. sn-Glycerol-3-phosphate acyltransferases (GPAT) are a group of important enzymes catalyzing the acylation of sn-glycerol-3-phosphate at the sn-1 or sn-2 position to produce lysophosphatidic acids. This reaction constitutes the first step of storage-lipid assembly and is also important in polar- and extracellular-lipid biosynthesis. Ten GPAT have been identified in Arabidopsis, and many homologs have also been reported in other plant species. These enzymes differentially localize to plastids, mitochondria, and the endoplasmic reticulum, where they have different biological functions, resulting in distinct metabolic fate(s) for lysophosphatidic acid. Although studies in recent years have led to new discoveries about plant GPAT, many gaps still exist in our understanding of this group of enzymes. In this article, we highlight current biochemical and molecular knowledge regarding plant GPAT, and also discuss deficiencies in our understanding of their functions in the context of plant acyl-lipid biosynthesis.


Asunto(s)
Arabidopsis/enzimología , Biocatálisis , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Lípidos/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA