Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(49): E3358-66, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23151513

RESUMEN

The controlled biogenesis of mitochondria is a key cellular system coordinated with the cell division cycle, and major efforts in systems biology currently are directed toward understanding of the control points at which this coordination is achieved. Here we present insights into the function, evolution, and regulation of mitochondrial biogenesis through the study of the protein import machinery in the human fungal pathogen, Candida albicans. Features that distinguish C. albicans from baker's yeast (Saccharomyces cerevisiae) include the stringency of metabolic control at the level of oxygen consumption, the potential for ATP exchange through the porin in the outer membrane, and components and domains in the sorting and assembling machinery complex, a molecular machine that drives the assembly of proteins in the outer mitochondrial membrane. Analysis of targeting sequences and assays of mitochondrial protein import show that components of the electron transport chain are imported by distinct pathways in C. albicans and S. cerevisiae, representing an evolutionary rewiring of mitochondrial import pathways. We suggest that studies using this pathogen as a model system for mitochondrial biogenesis will greatly enhance our knowledge of how mitochondria are made and controlled through the course of the cell-division cycle.


Asunto(s)
Evolución Biológica , Candida albicans/fisiología , Proteínas Portadoras/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Análisis por Conglomerados , Biología Computacional , Electroforesis en Gel de Poliacrilamida , Cadenas de Markov , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Consumo de Oxígeno/fisiología , Filogenia , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae , Especificidad de la Especie
2.
PLoS Genet ; 8(4): e1002613, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496666

RESUMEN

The Mediator complex is an essential co-regulator of RNA polymerase II that is conserved throughout eukaryotes. Here we present the first study of Mediator in the pathogenic fungus Candida albicans. We focused on the Middle domain subunit Med31, the Head domain subunit Med20, and Srb9/Med13 from the Kinase domain. The C. albicans Mediator shares some roles with model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, such as functions in the response to certain stresses and the role of Med31 in the expression of genes regulated by the activator Ace2. The C. albicans Mediator also has additional roles in the transcription of genes associated with virulence, for example genes related to morphogenesis and gene families enriched in pathogens, such as the ALS adhesins. Consistently, Med31, Med20, and Srb9/Med13 contribute to key virulence attributes of C. albicans, filamentation, and biofilm formation; and ALS1 is a biologically relevant target of Med31 for development of biofilms. Furthermore, Med31 affects virulence of C. albicans in the worm infection model. We present evidence that the roles of Med31 and Srb9/Med13 in the expression of the genes encoding cell wall adhesins are different between S. cerevisiae and C. albicans: they are repressors of the FLO genes in S. cerevisiae and are activators of the ALS genes in C. albicans. This suggests that Mediator subunits regulate adhesion in a distinct manner between these two distantly related fungal species.


Asunto(s)
Candida albicans/genética , Proteínas Fúngicas/genética , Regulación de la Expresión Génica , Complejo Mediador , Saccharomyces cerevisiae , Biopelículas/crecimiento & desarrollo , Candida albicans/patogenicidad , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica/genética , Complejo Mediador/genética , Complejo Mediador/metabolismo , Estructura Terciaria de Proteína/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Especificidad de la Especie , Virulencia/genética
3.
FEMS Yeast Res ; 14(2): 302-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24119159

RESUMEN

The yeast transcriptional activator Gal4 has long been the prototype for studies of eukaryotic transcription. Gal4 is phosphorylated in the DNA-binding domain (DBD); however, the molecular details and functional significance of this remain unknown. We mutagenized seven potential phosphoserines that lie on the solvent-exposed face of the DBD structure and assessed them for transcriptional activity and DNA binding in vivo. Serine to alanine mutants at positions 22, 47, and 85 show the greatest reduction in promoter occupancy and transcriptional activity at the MEL1 promoter containing a single UASGAL . Substitutions with the phosphomimetic aspartate restored DNA-binding and transcriptional activity at serines 22 and 85, suggesting that they are potential sites of Gal4 phosphorylation in vivo. In contrast, the serine to alanine mutants, except serine 22, were fully proficient for binding to the GAL1-10 promoter, containing multiple UASGAL sites, although they had a reduced ability to activate transcription. Collectively, these data show that at the GAL1-10 promoter, functions of the DBD in transcriptional activation can be uncoupled from roles in promoter binding. We suggest that the serines in the DBD mediate protein-protein contacts with the transcription machinery, leading to stabilization of Gal4 at promoters.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas/fisiología , Serina/metabolismo , Activación Transcripcional , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Unión al ADN/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Análisis por Matrices de Proteínas , Conformación Proteica , Solventes , Levaduras/genética , Levaduras/metabolismo
4.
Eukaryot Cell ; 11(4): 532-44, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22286093

RESUMEN

Recent studies indicate that mitochondrial functions impinge on cell wall integrity, drug tolerance, and virulence of human fungal pathogens. However, the mechanistic aspects of these processes are poorly understood. We focused on the mitochondrial outer membrane SAM (Sorting and Assembly Machinery) complex subunit Sam37 in Candida albicans. Inactivation of SAM37 in C. albicans leads to a large reduction in fitness, a phenotype not conserved with the model yeast Saccharomyces cerevisiae. Our data indicate that slow growth of the sam37ΔΔ mutant results from mitochondrial DNA loss, a new function for Sam37 in C. albicans, and from reduced activity of the essential SAM complex subunit Sam35. The sam37ΔΔ mutant was hypersensitive to drugs that target the cell wall and displayed altered cell wall structure, supporting a role for Sam37 in cell wall integrity in C. albicans. The sensitivity of the mutant to membrane-targeting antifungals was not significantly altered. The sam37ΔΔ mutant was avirulent in the mouse model, and bioinformatics showed that the fungal Sam37 proteins are distant from their animal counterparts and could thus represent potential drug targets. Our study provides the first direct evidence for a link between mitochondrial function and cell wall integrity in C. albicans and is further relevant for understanding mitochondrial function in fitness, antifungal drug tolerance, and virulence of this major pathogen. Beyond the relevance to fungal pathogenesis, this work also provides new insight into the mitochondrial and cellular roles of the SAM complex in fungi.


Asunto(s)
Candida albicans/metabolismo , Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Candidemia/microbiología , Pared Celular/ultraestructura , Células Cultivadas , ADN Mitocondrial/metabolismo , Fluconazol/farmacología , Proteínas Fúngicas/genética , Hifa/metabolismo , Riñón/microbiología , Riñón/patología , Macrófagos/microbiología , Potencial de la Membrana Mitocondrial , Ratones , Pruebas de Sensibilidad Microbiana , Proteínas Mitocondriales/genética , Nematodos/microbiología , Forma de los Orgánulos , Fenotipo , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Homología de Secuencia de Aminoácido , Virulencia
5.
Genomics ; 98(1): 56-63, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21457775

RESUMEN

Equimolecular presence of ribosomal proteins (RPs) in the cell is needed for ribosome assembly and is achieved by synchronized expression of ribosomal protein genes (RPGs) with promoters of similar strengths. Over-represented motifs of RPG promoter regions are identified as targets for specific transcription factors. Unlike RPs, those motifs are not conserved between mammals, drosophila, and yeast. We analyzed RPGs proximal promoter regions of three basal metazoans with sequenced genomes: sponge, cnidarian, and placozoan and found common features, such as 5'-terminal oligopyrimidine tracts and TATA-boxes. Furthermore, we identified over-represented motifs, some of which displayed the highest similarity to motifs abundant in human RPG promoters and not present in Drosophila or yeast. Our results indicate that humans over-represented motifs, as well as corresponding domains of transcription factors, were established very early in metazoan evolution. The fast evolving nature of RPGs regulatory network leads to formation of other, lineage specific, over-represented motifs.


Asunto(s)
Proteínas Ribosómicas/genética , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteínas Ribosómicas/química , Alineación de Secuencia
6.
Plant J ; 60(5): 783-94, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19682289

RESUMEN

Working in tandem, two photosystems in the chloroplast thylakoid membranes produce a linear electron flow from H(2)O to NADP(+). Final electron transfer from ferredoxin to NADP(+) is accomplished by a flavoenzyme ferredoxin:NADP(+) oxidoreductase (FNR). Here we describe TROL (thylakoid rhodanese-like protein), a nuclear-encoded component of thylakoid membranes that is required for tethering of FNR and sustaining efficient linear electron flow (LEF) in vascular plants. TROL consists of two distinct modules; a centrally positioned rhodanese-like domain and a C-terminal hydrophobic FNR binding region. Analysis of Arabidopsis mutant lines indicates that, in the absence of TROL, relative electron transport rates at high-light intensities are severely lowered accompanied with significant increase in non-photochemical quenching (NPQ). Thus, TROL might represent a missing thylakoid membrane docking site for a complex between FNR, ferredoxin and NADP(+). Such association might be necessary for maintaining photosynthetic redox poise and enhancement of the NPQ.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Ferredoxina-NADP Reductasa/metabolismo , Proteínas de la Membrana/metabolismo , Tilacoides/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Transporte de Electrón/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Datos de Secuencia Molecular , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Alineación de Secuencia , Transducción de Señal
7.
FEMS Microbiol Lett ; 253(2): 207-13, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16239078

RESUMEN

Mitochondrial dysfunction has been shown to elicit broad effects on nuclear gene expression. We show here that transcription dependent on the prototypical acidic activator Gal4 is responsive to mitochondrial dysfunction. In cells with no mitochondrial DNA, Gal4-dependent gene expression is elevated. A minimal Gal4 activator containing the DNA binding and activation domain is sufficient for this response. Transcription dependent on a fusion of Gal4 to a heterologous DNA binding domain is similarly elevated in a mitochondrial mutant. Analysis of different Gal4-dependent promoters and gel mobility shift assays suggest that the effect of mitochondrial dysfunction on Gal4 activity is related to increased DNA binding to the cognate Gal4 element. Given that fermentation is the only means to obtain energy in respiratory deficient cells, it is possible that higher Gal4 activity in cells with dysfunctional mitochondria works to promote more efficient fermentation of galactose.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN , Fermentación , Galactosa/metabolismo , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Transcripción Genética , Regulación hacia Arriba
8.
Biochimie ; 97: 22-7, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24139904

RESUMEN

Three cyclin dependent kinases, Cdk7, Cdk8 and Cdk9 are intimately connected with the processes of RNA polymerase II dependent transcription initiation and elongation in eukaryotic cells. Each of these kinases is part of a larger multisubunit complex, TFIIH, Mediator and p-TEFb respectively. Of the three kinases, Cdk8 is the most complex given that it has been associated with both positive and negative effects on transcription via mechanisms that include regulation of transcription factor turnover, regulation of CTD phosphorylation and regulation of activator or repressor function. Furthermore, Cdk8 has emerged as a key regulator of multiple transcriptional programs linked to nutrient/growth factor sensing and differentiation control. As such Cdk8 represents a potentially interesting therapeutic drug target. In this review we summarize the current state of knowledge on Cdk8 function both in yeast and higher eukaryotes as well as discussing the effects of Cdk8 null mutations at the organismal level.


Asunto(s)
Quinasa 8 Dependiente de Ciclina/genética , Regulación de la Expresión Génica , Schizosaccharomyces/genética , Transcripción Genética , Animales , Quinasa 8 Dependiente de Ciclina/metabolismo , Humanos , Mutación , Fosforilación , Estructura Terciaria de Proteína , Schizosaccharomyces/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Genome Biol Evol ; 2: 888-96, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21071627

RESUMEN

Chloroplast sensor kinase (CSK) is a bacterial-type sensor histidine kinase found in chloroplasts--photosynthetic plastids--in eukaryotic plants and algae. Using a yeast two-hybrid screen, we demonstrate recognition and interactions between: CSK, plastid transcription kinase (PTK), and a bacterial-type RNA polymerase sigma factor-1 (SIG-1). CSK interacts with itself, with SIG-1, and with PTK. PTK also interacts directly with SIG-1. PTK has previously been shown to catalyze phosphorylation of plastid-encoded RNA polymerase (PEP), suppressing plastid transcription nonspecifically. Phospho-PTK is inactive as a PEP kinase. Here, we propose that phospho-CSK acts as a PTK kinase, releasing PTK repression of chloroplast transcription, while CSK also acts as a SIG-1 kinase, blocking transcription specifically at the gene promoter of chloroplast photosystem I. Oxidation of the photosynthetic electron carrier plastoquinone triggers phosphorylation of CSK, inducing chloroplast photosystem II while suppressing photosystem I. CSK places photosystem gene transcription under the control of photosynthetic electron transport. This redox signaling pathway has its origin in cyanobacteria, photosynthetic prokaryotes from which chloroplasts evolved. The persistence of this mechanism in cytoplasmic organelles of photosynthetic eukaryotes is in precise agreement with the CoRR hypothesis for the function of organellar genomes: the plastid genome and its primary gene products are Co-located for Redox Regulation. Genes are retained in plastids primarily in order for their expression to be subject to this rapid and robust redox regulatory transcriptional control mechanism, whereas plastid genes also encode genetic system components, such as some ribosomal proteins and RNAs, that exist in order to support this primary, redox regulatory control of photosynthesis genes. Plastid genome function permits adaptation of the photosynthetic apparatus to changing environmental conditions of light quantity and quality.


Asunto(s)
Arabidopsis/genética , Evolución Molecular , Regulación de la Expresión Génica , Genoma de Plastidios , Fotosíntesis , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bacterias/enzimología , Bacterias/genética , Cloroplastos/enzimología , Cloroplastos/genética , Histidina Quinasa , Plastidios/genética , Plastidios/metabolismo , Unión Proteica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transcripción Genética
10.
EMBO Rep ; 7(5): 496-9, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16670683

RESUMEN

During the past two decades, the yeast Gal4 protein has been used as a model for studying transcriptional activation in eukaryotes. Many of the properties of transcriptional regulation first demonstrated for Gal4 have since been shown to be reiterated in the function of several other eukaryotic transcriptional regulators. Technological advances based on the transcriptional properties of this factor--such as the two-hybrid technology and Gal4-inducible systems for controlled gene expression--have had far-reaching influences in fields beyond transcription. In this review, we provide an updated account of Gal4 function, including data from new technologies that have been recently applied to the study of the GAL network.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica/fisiología , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética/fisiología , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Factores de Transcripción/biosíntesis , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Activación Transcripcional/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA