Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(44): e2207634119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279467

RESUMEN

Understanding the potential of natural populations to adapt to altered environments is becoming increasingly relevant in evolutionary research. Currently, our understanding of adaptation to human alteration of the environment is hampered by lack of knowledge on the genetic basis of traits, lack of time series, and little or no information on changes in optimal trait values. Here, we used time series data spanning nearly a century to investigate how the body mass of Atlantic salmon (Salmo salar) adapts to river regulation. We found that the change in body mass followed the change in waterflow, both decreasing to ∼1/3 of their original values. Allele frequency changes at two loci in the regions of vgll3 and six6 predicted more than 80% of the observed body mass reduction. Modeling the adaptive dynamics revealed that the population mean lagged behind its optimum before catching up approximately six salmon generations after the initial waterflow reduction. Our results demonstrate rapid adaptation mediated by large-effect loci and provide insight into the temporal dynamics of evolutionary rescue following human disturbance.


Asunto(s)
Salmo salar , Animales , Adaptación Fisiológica/genética , Tamaño Corporal/genética , Frecuencia de los Genes , Ríos , Salmo salar/genética
2.
J Perinat Med ; 51(6): 737-751, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-36503655

RESUMEN

Cerebral palsy, the most common disability in childhood, is a devastating non-progressive ailment of the infants' brain with lifelong sequelae, e.g., spastic paresis, chronic pain, inability to walk, intellectual disability, behavioral disorders, for which there is no cure at present. CP may develop after pediatric brain damage caused, e.g., by hypoxic-ischemia, periventricular leukomalacia, intracranial hemorrhage, hypoxic-ischemic encephalopathy, trauma, stroke, and infection. About 17 million people worldwide live with cerebral palsy as a result of pediatric brain damage. This reflects both the magnitude of the personal, medical, and socioeconomic global burden of this brain disorder and the overt unmet therapeutic needs of the pediatric population. This review will focus on recent preclinical, clinical, and regulatory developments in cell therapy for infantile cerebral palsy by transplantation of cord blood derived mononuclear cells from bench to bedside. The body of evidence suggests that cord blood cell therapy of cerebral palsy in the autologous setting is feasible, effective, and safe, however, adequately powered phase 3 trials are overdue.


Asunto(s)
Lesiones Encefálicas , Parálisis Cerebral , Hipoxia-Isquemia Encefálica , Leucomalacia Periventricular , Recién Nacido , Humanos , Niño , Parálisis Cerebral/epidemiología , Encéfalo , Células Madre , Lesiones Encefálicas/complicaciones , Hipoxia-Isquemia Encefálica/complicaciones
3.
J Fish Biol ; 100(6): 1419-1431, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35357697

RESUMEN

The timing of seaward migration is a key life-history trait for many anadromous fish species, with growth and survival at sea depending on a match/mismatch scenario between the timing of the sea entry and optimal conditions. Based on a 25-year study with 15,226 individually tagged brown trout (Salmo trutta) in a Norwegian river, we analysed how the within-season timing of sea migration impacted growth and survival. In both first-time and veteran migrants, marine growth was highest for early migrating individuals, large individuals, and those with a low condition factor when entering the sea. Survival was highest for individuals entering the sea early in the season. In first-time migrants, survival increased with body length. Survival also increased with the number of other smolts migrating simultaneously. As the early smolts were the most successful, it may seem strange that many smolts migrate later in the season. We suggest that late-migrating smolts may not be of a size and/or physiological state suitable for early marine conditions, and may make the best of a bad situation.


Asunto(s)
Migración Animal , Migrantes , Migración Animal/fisiología , Animales , Humanos , Ríos , Estaciones del Año , Trucha/fisiología
4.
Nature ; 528(7582): 405-8, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26536110

RESUMEN

Males and females share many traits that have a common genetic basis; however, selection on these traits often differs between the sexes, leading to sexual conflict. Under such sexual antagonism, theory predicts the evolution of genetic architectures that resolve this sexual conflict. Yet, despite intense theoretical and empirical interest, the specific loci underlying sexually antagonistic phenotypes have rarely been identified, limiting our understanding of how sexual conflict impacts genome evolution and the maintenance of genetic diversity. Here we identify a large effect locus controlling age at maturity in Atlantic salmon (Salmo salar), an important fitness trait in which selection favours earlier maturation in males than females, and show it is a clear example of sex-dependent dominance that reduces intralocus sexual conflict and maintains adaptive variation in wild populations. Using high-density single nucleotide polymorphism data across 57 wild populations and whole genome re-sequencing, we find that the vestigial-like family member 3 gene (VGLL3) exhibits sex-dependent dominance in salmon, promoting earlier and later maturation in males and females, respectively. VGLL3, an adiposity regulator associated with size and age at maturity in humans, explained 39% of phenotypic variation, an unexpectedly large proportion for what is usually considered a highly polygenic trait. Such large effects are predicted under balancing selection from either sexually antagonistic or spatially varying selection. Our results provide the first empirical example of dominance reversal allowing greater optimization of phenotypes within each sex, contributing to the resolution of sexual conflict in a major and widespread evolutionary trade-off between age and size at maturity. They also provide key empirical evidence for how variation in reproductive strategies can be maintained over large geographical scales. We anticipate these findings will have a substantial impact on population management in a range of harvested species where trends towards earlier maturation have been observed.


Asunto(s)
Envejecimiento/genética , Tamaño Corporal/genética , Proteínas de Peces/genética , Variación Genética/genética , Crecimiento/genética , Salmo salar/genética , Caracteres Sexuales , Animales , Evolución Biológica , Femenino , Proteínas de Peces/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Modelos Biológicos , Fenotipo , Reproducción/genética , Reproducción/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Genet Sel Evol ; 49(1): 22, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28196485

RESUMEN

BACKGROUND: Selection acts strongly on individuals that colonise a habitat and have phenotypic traits that deviate from the local optima. Our objective was to investigate the evolutionary rates in Atlantic salmon (Salmo salar) in a river system (the Vefsna watershed in Norway), fewer than 15 generations after colonisation of two new branches of the watercourse for spawning, which were made available by construction of fish ladders in 1889. METHODS: Differences in age and size were analysed using scale samples collected by anglers. Age and size of recaptures from a tagging experiment were compared between the three branches. Furthermore, genetic analyses of scale samples collected in the three river branches during two periods were performed to evaluate whether observed differences evolved by genetic divergence over this short period, or were the result of phenotypic plasticity. RESULTS: We demonstrate that evolution can be rapid when fish populations are subjected to strong selection, in spite of sympatry with their ancestral group, no physical barriers to hybridisation, and natal homing as the only reproductive isolating barrier. After fewer than 15 generations, there was evidence of genetic isolation between the two branches based on genetic variation at 96 single nucleotide polymorphism loci, and significant differences in several life history traits, including size and age at maturity. Selection against large size at maturity appears to have occurred, since large individuals were reluctant to ascend the branch with less abundant water. The estimated evolutionary rate of change in life history traits is within the upper 3 to 7% reported in other fish studies on microevolutionary rates. CONCLUSIONS: These findings suggest that with sufficient genetic diversity, Atlantic salmon can rapidly colonise and evolve to new accessible habitats. This has profound implications for conservation and restoration of populations and habitats in order to meet evolutionary challenges, including alterations in water regime, whether altered by climate change or anthropogenic factors.


Asunto(s)
Evolución Molecular , Especiación Genética , Salmo salar/genética , Animales , Ecosistema , Variación Genética , Genotipo , Fenotipo
7.
Anal Bioanal Chem ; 408(17): 4595-614, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27100228

RESUMEN

The emergence of high-throughput, massive or next-generation sequencing technologies has created a completely new foundation for molecular analyses. Various selective enrichment processes are commonly applied to facilitate detection of predefined (known) targets. Such approaches, however, inevitably introduce a bias and are prone to miss unknown targets. Here we review the application of high-throughput sequencing technologies and the preparation of fit-for-purpose whole genome shotgun sequencing libraries for the detection and characterization of genetically modified and derived products. The potential impact of these new sequencing technologies for the characterization, breeding selection, risk assessment, and traceability of genetically modified organisms and genetically modified products is yet to be fully acknowledged. The published literature is reviewed, and the prospects for future developments and use of the new sequencing technologies for these purposes are discussed.


Asunto(s)
Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Organismos Modificados Genéticamente , Transcriptoma , Transgenes
8.
Anal Bioanal Chem ; 408(17): 4575-93, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27086015

RESUMEN

With the increased global production of different genetically modified (GM) plant varieties, chances increase that unauthorized GM organisms (UGMOs) may enter the food chain. At the same time, the detection of UGMOs is a challenging task because of the limited sequence information that will generally be available. PCR-based methods are available to detect and quantify known UGMOs in specific cases. If this approach is not feasible, DNA enrichment of the unknown adjacent sequences of known GMO elements is one way to detect the presence of UGMOs in a food or feed product. These enrichment approaches are also known as chromosome walking or gene walking (GW). In recent years, enrichment approaches have been coupled with next generation sequencing (NGS) analysis and implemented in, amongst others, the medical and microbiological fields. The present review will provide an overview of these approaches and an evaluation of their applicability in the identification of UGMOs in complex food or feed samples.


Asunto(s)
ADN/genética , Organismos Modificados Genéticamente/genética , Paseo de Cromosoma , Alimentos Modificados Genéticamente , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hibridación de Ácido Nucleico , Reacción en Cadena de la Polimerasa
9.
Anal Bioanal Chem ; 408(17): 4615-30, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27178552

RESUMEN

Species identification using DNA barcodes has been widely adopted by forensic scientists as an effective molecular tool for tracking adulterations in food and for analysing samples from alleged wildlife crime incidents. DNA barcoding is an approach that involves sequencing of short DNA sequences from standardized regions and comparison to a reference database as a molecular diagnostic tool in species identification. In recent years, remarkable progress has been made towards developing DNA metabarcoding strategies, which involves next-generation sequencing of DNA barcodes for the simultaneous detection of multiple species in complex samples. Metabarcoding strategies can be used in processed materials containing highly degraded DNA e.g. for the identification of endangered and hazardous species in traditional medicine. This review aims to provide insight into advances of plant and animal DNA barcoding and highlights current practices and recent developments for DNA metabarcoding of food and wildlife forensic samples from a practical point of view. Special emphasis is placed on new developments for identifying species listed in the Convention on International Trade of Endangered Species (CITES) appendices for which reliable methods for species identification may signal and/or prevent illegal trade. Current technological developments and challenges of DNA metabarcoding for forensic scientists will be assessed in the light of stakeholders' needs.


Asunto(s)
Animales Salvajes/genética , ADN/genética , Alimentos , Genética Forense , Plantas/genética , Animales , Biología Computacional , Código de Barras del ADN Taxonómico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
10.
Anal Chem ; 87(16): 8218-26, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26169291

RESUMEN

Presence of genetically modified organisms (GMO) in food and feed products is regulated in many countries. The European Union (EU) has implemented a threshold for labeling of products containing more than 0.9% of authorized GMOs per ingredient. As the number of GMOs has increased over time, standard-curve based simplex quantitative polymerase chain reaction (qPCR) analyses are no longer sufficiently cost-effective, despite widespread use of initial PCR based screenings. Newly developed GMO detection methods, also multiplex methods, are mostly focused on screening and detection but not quantification. On the basis of droplet digital PCR (ddPCR) technology, multiplex assays for quantification of all 12 EU authorized GM maize lines (per April first 2015) were developed. Because of high sequence similarity of some of the 12 GM targets, two separate multiplex assays were needed. In both assays (4-plex and 10-plex), the transgenes were labeled with one fluorescence reporter and the endogene with another (GMO concentration = transgene/endogene ratio). It was shown that both multiplex assays produce specific results and that performance parameters such as limit of quantification, repeatability, and trueness comply with international recommendations for GMO quantification methods. Moreover, for samples containing GMOs, the throughput and cost-effectiveness is significantly improved compared to qPCR. Thus, it was concluded that the multiplex ddPCR assays could be applied for routine quantification of 12 EU authorized GM maize lines. In case of new authorizations, the events can easily be added to the existing multiplex assays. The presented principle of quantitative multiplexing can be applied to any other domain.


Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex/métodos , Plantas Modificadas Genéticamente/genética , Zea mays/genética , Unión Europea , Reacción en Cadena de la Polimerasa Multiplex/economía , Reproducibilidad de los Resultados
11.
Glob Chang Biol ; 20(1): 61-75, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23966281

RESUMEN

Migrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater ('parr') stage to the migratory stage where they descend streams and enter salt water ('smolt') is characterized by morphological, physiological and behavioural changes where the timing of this parr-smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within- and among-river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post-smolts. Using generalized additive mixed-effects modelling, we analysed spatio-temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 °C and levelling off at higher values, and with sea-surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5 days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes.


Asunto(s)
Migración Animal , Cambio Climático , Salmo salar/fisiología , Animales , Clorofila/análisis , Clorofila A , Océanos y Mares , Ríos , Temperatura , Factores de Tiempo
12.
AJOG Glob Rep ; 4(1): 100305, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38327671

RESUMEN

BACKGROUND: Fetal growth restriction and immaturity are associated with poor neurocognitive development and child psychopathology affecting educational success at school and beyond. However, the differential effects of either obstetrical risk factor on predicted psychomotor development have not yet been deciphered. OBJECTIVE: This study aimed to separately study the impact of growth restriction and that of immaturity on predicted psychomotor development at the preschool age of 4.3 (standard deviation, 0.8) years using birthweight percentiles in a prospective cohort of preterm infants born at ≤37+6/7 weeks of gestation. Differences between small for gestational age newborns with intrauterine growth restriction and those without were described. We examined predicted total psychomotor development score, predicted developmental disability index, calculated morphometric vitality index, and predicted intelligence quotient, Porteus Maze test score, and neurologic examination optimality score in 854 preterm infants from a large prospective screening cohort (cranial ultrasound screening, n=5,301). STUDY DESIGN: This was a prospective cranial ultrasound screening study with a single-center cohort observational design (data collection done from 1984-1988, analysis done in 2022). The study included 5,301 live-born infants, of whom 854 (16.1%) were preterm infants (≤37+6/7 weeks' gestation), and was conducted on the day of discharge of the mother at 5 to 8 days postpartum from a level 3 perinatal center. Predicted psychomotor development, as assessed by the predicted total psychomotor development score, predicted developmental disability index, calculated morphometric vitality index, predicted intelligence quotient, Porteus Maze test score, and neurologic examination optimality score were calculated. We related psychomotor development indices and measures to gestational age in 3 groups of birthweight percentiles (ie, 10%, 50%, and 90% for small, appropriate, and large for gestational age newborns, respectively) using linear regression analysis, analysis of variance, multivariate analysis of variance, and t test procedures. RESULTS: The key result of our study is the observation that in preterm infants born at ≤37+6/7 weeks of gestation, growth restriction as compared with immaturity is the prime risk factor for impairment of overall predicted psychomotor development, intelligence quotient, Porteus Maze test results, and neurologic examination optimality score at the preschool age of 4.3 (standard deviation, 0.8) years (P<.001). This is particularly true for intrauterine growth restriction. These detrimental effects of growth restriction become more prominent with decreasing gestational age (P<.001). As expected, growth restriction in preterm infants born at ≤37+6/7 weeks of gestation was associated with a number of obstetrical risk factors, including hypertension in pregnancy (P<.001), multiple pregnancy (P<.001), pathologic cardiotocography (P=.001), and low pH (P=.007), increased pCO2 (P=.009), and poor pO2 (P<.001) in umbilical arterial blood. Of note, there were no differences in cerebral hemorrhage or white matter damage among small, appropriate, and large for gestational age birthweight percentile groups, suggesting an independent mechanism of brain injury caused by preterm growth restriction resulting in poor psychomotor development. CONCLUSION: Compared with immaturity, growth restriction in preterm infants has more intense detrimental effects on psychomotor development, necessitating improved risk stratification. This finding has implications for clinical management, parental consultation, and early intervention strategies to improve school performance, educational success, and mental health in children. The mechanisms of brain injury specific to growth restriction in preterm infants require further elucidation.

13.
Trials ; 25(1): 85, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273393

RESUMEN

BACKGROUND: A high concentration of inspired supplemental oxygen may possibly cause hypercapnia and acidosis and increase mortality in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Even so, patients with AECOPD are being treated with high oxygen flow rates when receiving inhalation drugs in the prehospital setting. A cluster-randomised controlled trial found that reduced oxygen delivery by titrated treatment reduced mortality-a result supported by observational studies-but the results have never been reproduced. In the STOP-COPD trial, we investigate the effect of titrated oxygen delivery compared with usual care consisting of high flow oxygen delivery in patients with AECOPD in the prehospital setting. METHODS: In this randomised controlled trial, patients will be blinded to allocation. Patients with suspected AECOPD (n = 1888) attended by the emergency medical service (EMS) and aged > 40 years will be allocated randomly to either standard treatment or titrated oxygen, targeting a blood oxygen saturation of 88-92% during inhalation therapy. The trial will be conducted in the Central Denmark Region and include all ambulance units. The power to detect a 3% 30-day mortality risk difference is 80%. The trial is approved as an emergency trial. Hence, EMS providers will include patients without prior consent. DISCUSSION: The results will provide evidence on whether titrated oxygen delivery outperforms standard high flow oxygen when used to nebulise inhaled bronchodilators in AECOPD treatment. The trial is designed to ensure unselected inclusion of patients with AECOPD needing nebulised bronchodilators-a group of patients that receives high oxygen fractions when treated in the prehospital setting where the only compressed gas is generally pure oxygen. Conducting this trial, we aim to improve treatment for people with AECOPD while reducing their 30-day mortality. TRIAL REGISTRATION: European Union Clinical Trials (EUCT) number: 2022-502003-30-00 (authorised 06/12/2022), ClinicalTrials.gov number: NCT05703919 (released 02/02/2023), Universal trial number: U1111-1278-2162.


Asunto(s)
Terapia por Inhalación de Oxígeno , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Broncodilatadores/uso terapéutico , Hipercapnia/etiología , Oxígeno/uso terapéutico , Terapia por Inhalación de Oxígeno/efectos adversos , Terapia por Inhalación de Oxígeno/métodos , Enfermedad Pulmonar Obstructiva Crónica/terapia , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Adulto , Persona de Mediana Edad , Anciano
14.
AJOG Glob Rep ; 3(4): 100219, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37719644

RESUMEN

BACKGROUND: Low birthweight resulting from preterm birth or fetal growth restriction is associated with poor neurocognitive development and child psychopathology affecting school performance and educational success. Prediction of developmental performance may therefore serve as a basis for early intervention strategies to improve educational success and mental health of our children in a timely manner. OBJECTIVE: This study aimed to explore the predictive capacity of morphometric variables taken at birth and that of obstetrical risk factors to predict developmental performance at 4.3 (standard deviation, 0.8) years preschool age. We examined predicted Total psychomotor development score, predicted Developmental disability index, calculated Morphometric vitality index, and predicted Intelligence quotient, Maze test, and Neurologic examination optimality score in a large prospective screening (cranial ultrasound screening, n=5,301) and validation cohort (n=508,926). STUDY DESIGN: In a single-center cohort observational study design (data collection done from 1984-1988, analysis done in 2022), a prospective cranial ultrasound screening study (1984-1988) was carried out on 5,301 live-born infants, including 571 (10.8%) preterm infants (≤36 weeks gestation), on the day of discharge of the mother at 5 to 8 days postpartum from a level 3 perinatal center. Predicted psychomotor development as assessed by predicted Total psychomotor development score, predicted Developmental disability index, calculated Morphometric vitality index, and predicted Intelligence quotient, Maze test, and Neurologic examination optimality score, was calculated. We related growth variables and obstetrical risk factors to Psychomotor development indices, and calculated Morphometric vitality index using odds ratios, receiver operating characteristics, analysis of variance, and multivariate analysis of variance. RESULTS: The key result of our study is the observation that simple morphometric measures from newborns at birth like weight/head circumference ratio predict overall psychomotor development at 4.3 years (standard deviation, 0.8) of preschool age. Psychomotor development was assessed by predicted Total psychomotor development score, predicted Intelligence quotient, Maze test, and Neurologic examination optimality score, and related to weight/head circumference ratio in linear regression (P<.001) and ROC curve analyses (P<.001). Further, white matter damage strongly predicted adverse outcome in predicted Developmental disability index (P<.001). There was also a close correlation between calculated Morphometric vitality index and predicted Developmental disability index (P<.001). Finally, brain body weight ratio, weight/head circumference ratio, preterm birth, reduced Apgar at 10 minutes, weight/length ratio, and white matter damage yielded highest odds ratios for adverse outcome in predicted Total psychomotor development score and in predicted Developmental disability index (P<.001) and high effect sizes in reduced predicted Intelligence quotient, Maze test, and Neurologic examination optimality scores. CONCLUSION: Simple morphometric data, birth variables, and obstetrical risk factors bear predictive capacity for neurocognitive performance in children at 4.3 years (standard deviation, 0.8) of age and hence provide a basis for parental consultation and early intervention to improve school performance, educational success, and mental health in developed and developing countries.

15.
Front Cell Dev Biol ; 11: 1282860, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965578

RESUMEN

Mesenchymal stromal cells (MSCs) have demonstrated therapeutic potential in diverse clinical settings, largely due to their ability to produce extracellular vesicles (EVs). These EVs play a pivotal role in modulating immune responses, transforming pro-inflammatory cues into regulatory signals that foster a pro-regenerative milieu. Our previous studies identified the variability in the immunomodulatory effects of EVs sourced from primary human bone marrow MSCs as a consistent challenge. Given the limited proliferation of primary MSCs, protocols were advanced to derive MSCs from GMP-compliant induced pluripotent stem cells (iPSCs), producing iPSC-derived MSCs (iMSCs) that satisfied rigorous MSC criteria and exhibited enhanced expansion potential. Intriguingly, even though obtained iMSCs contained the potential to release immunomodulatory active EVs, the iMSC-EV products displayed batch-to-batch functional inconsistencies, mirroring those from bone marrow counterparts. We also discerned variances in EV-specific protein profiles among independent iMSC-EV preparations. Our results underscore that while iMSCs present an expansive growth advantage, they do not overcome the persistent challenge of functional variability of resulting MSC-EV products. Once more, our findings accentuate the crucial need for batch-to-batch functional testing, ensuring discrimination of effective and ineffective MSC-EV products for considered downstream applications.

16.
Scand J Trauma Resusc Emerg Med ; 30(1): 38, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35642066

RESUMEN

BACKGROUND: Fluid therapy in patients with suspected infection is controversial, and it is not known whether fluid treatment administered in the prehospital setting is beneficial. In the absence of evidence-based guidelines for prehospital fluid therapy for patients with suspected infection, Emergency Medical Services (EMS) personnel are challenged on when and how to initiate such therapy. This study aimed to assess EMS personnel's decision-making in prehospital fluid therapy, including triggers for initiating fluid and fluid volumes, as well as the need for education and evidence-based guidelines on prehospital fluid therapy in patients with suspected infection. METHODS: An online survey concerning fluid administration in prehospital patients with suspected infection was distributed to all EMS personnel in the Central Denmark Region, including ambulance clinicians and prehospital critical care anaesthesiologists (PCCA). The survey consisted of sections concerning academic knowledge, statements about fluid administration, triggers to evaluate patient needs for intravenous fluid, and clinical scenarios. RESULTS: In total, 468/807 (58%) ambulance clinicians and 106/151 (70%) PCCA responded to the survey. Of the respondents, 73% (n = 341) of the ambulance clinicians and 100% (n = 106) of the PCCA felt confident about administering fluids to prehospital patients with infections. However, both groups primarily based their fluid-related decisions on "clinical intuition". Ambulance clinicians named the most frequently faced challenges in fluid therapy as "Unsure whether the patient needs fluid" and "Unsure about the volume of fluid the patient needs". The five most frequently used triggers for evaluating fluid needs were blood pressure, history taking, skin turgor, capillary refill time, and shock index, the last of which only applied to ambulance clinicians. In the scenarios, the majority administered 500 ml to a normotensive woman with suspected sepsis and 1000 ml to a woman with suspected sepsis-related hypotension. Moreover, 97% (n = 250) of the ambulance clinicians strongly agreed or agreed that they were interested in more education about fluid therapy in patients with suspected infection. CONCLUSION: The majority of ambulance clinicians and PCCA based their fluid administration on "clinical intuition". They faced challenges deciding on fluid volumes and individual fluid needs. Thus, they were eager to learn more and requested research and evidence-based guidelines.


Asunto(s)
Servicios Médicos de Urgencia , Sepsis , Ambulancias , Femenino , Fluidoterapia , Humanos , Encuestas y Cuestionarios
17.
Sci Adv ; 8(9): eabk2542, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245115

RESUMEN

Ecological regime shifts are abrupt changes in the structure and function of ecosystems that persist over time, but evidence of contemporary regime shifts are rare. Historical scale data from 52,384 individual wild Atlantic salmon caught in 180 rivers from 1989 to 2017 reveal that growth of Atlantic salmon across the Northeast Atlantic Ocean abruptly decreased following the year 2004. At the same time, the proportion of early maturing Atlantic salmon decreased. These changes occurred after a marked decrease in the extent of Arctic water in the Norwegian Sea, a subsequent warming of spring water temperature before Atlantic salmon entering the sea, and an approximately 50% reduction of zooplankton across large geographic areas of the Northeast Atlantic Ocean. A sudden decrease in growth was also observed among Atlantic mackerel in the Norwegian Sea. Our results point toward an ecosystem-scale regime shift in the Northeast Atlantic Ocean.

19.
Dis Aquat Organ ; 95(1): 9-17, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21797031

RESUMEN

Aphanomyces astaci, a specialised parasite of North American freshwater crayfish, is the disease agent of crayfish plague that is lethal to European freshwater crayfish. The life cycle of A. astaci has been inferred from experimental laboratory studies, but less is known about its natural sustainability and ecology. To address such questions, tools for monitoring of A. astaci directly in aquatic environments are needed. Here, we present an approach for detecting and quantifying A. astaci directly from water samples using species-specific TaqMan minor groove binder real-time PCR. Samples of a 10-fold dilution series from approximately 10(4) to approximately 1 spore of A. astaci were repeatedly tested, and reliable detection down to 1 spore was demonstrated. Further, to simulate real-life samples from natural water bodies, water samples from lakes of various water qualities were spiked with spores. The results demonstrated that co-extracted humic acids inhibit detection significantly. However, use of bovine serum albumin or the TaqMan Environmental Master Mix largely removes this problem. The practical application of the approach was successfully demonstrated on real-life water samples from crayfish farms in Finland hosting infected North American signal crayfish Pacifastacus leniusculus. Direct monitoring of A. astaci from aquatic environments may find application in the management of wild noble crayfish Astacus astacus stocks, improved aquaculture practices and more targeted conservation actions. The approach will further facilitate studies of A. astaci spore dynamics during plague outbreaks and in carrier crayfish populations, which will broaden our knowledge of the biology of this devastating crayfish pathogen.


Asunto(s)
Astacoidea/parasitología , Ecosistema , Monitoreo del Ambiente , Oomicetos/fisiología , Agua/parasitología , Animales , ADN/genética , Reacción en Cadena de la Polimerasa/métodos , Esporas/aislamiento & purificación
20.
Foodborne Pathog Dis ; 8(8): 887-900, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21492021

RESUMEN

Salmonella enterica is commonly acquired from contaminated food and is an important cause of illness worldwide. Interventions are needed to control Salmonella; subtyping Salmonella by serotyping is useful for targeting such interventions. We, therefore, analyzed the global distribution of the 15 most frequently identified serovars of Salmonella isolated from humans from 2001 to 2007 in laboratories from 37 countries that participated in World Health Organization Global Foodborne Infections Network and demonstrated serotyping proficiency in the Global Foodborne Infections Network External Quality Assurance System. In all regions throughout the study period, with the exception of the Oceania and North American regions, Salmonella serovars Enteritidis and Typhimurium ranked as the most common and second most common serovar, respectively. In the North American and Oceania (Australia and New Zealand) regions, Salmonella serovar Typhimurium was the most common serovar reported, and Salmonella serovar Enteritidis was the second most common serovar. During the study period, the proportion of Salmonella isolates reported from humans that were Salmonella serovar Enteritidis was 43.5% (range: 40.6% [2007] to 44.9% [2003]), and Salmonella serovar Typhimurium was 17.1% (range: 15% [2007] to 18.9% [2001]). Salmonella serovars Newport (mainly observed in Latin and North American and European countries), Infantis (dominating in all regions), Virchow (mainly observed in Asian, European, and Oceanic countries), Hadar (profound in European countries), and Agona (intense in Latin and North American and European countries) were also frequently isolated with an overall proportion of 3.5%, 1.8%, 1.5%, 1.5%, and 0.8%, respectively. There were large differences in the most commonly isolated serovars between regions, but lesser differences between countries within the same region. The results also highlight the complexity of the global epidemiology of Salmonella and the need and importance for improving monitoring data of those serovars of highest epidemiologic importance.


Asunto(s)
Microbiología de Alimentos , Salmonella/clasificación , Serotipificación , Bases de Datos Factuales , Humanos , Laboratorios , Control de Calidad , Salmonella/aislamiento & purificación , Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Salmonella enteritidis/aislamiento & purificación , Salmonella typhimurium/aislamiento & purificación , Organización Mundial de la Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA