Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(4): 921-933.e14, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388452

RESUMEN

Contact-dependent growth inhibition (CDI) entails receptor-mediated delivery of CdiA-derived toxins into Gram-negative target bacteria. Using electron cryotomography, we show that each CdiA effector protein forms a filament extending ∼33 nm from the cell surface. Remarkably, the extracellular filament represents only the N-terminal half of the effector. A programmed secretion arrest sequesters the C-terminal half of CdiA, including the toxin domain, in the periplasm prior to target-cell recognition. Upon binding receptor, CdiA secretion resumes, and the periplasmic FHA-2 domain is transferred to the target-cell outer membrane. The C-terminal toxin region of CdiA then penetrates into the target-cell periplasm, where it is cleaved for subsequent translocation into the cytoplasm. Our findings suggest that the FHA-2 domain assembles into a transmembrane conduit for toxin transport into the periplasm of target bacteria. We propose that receptor-triggered secretion ensures that FHA-2 export is closely coordinated with integration into the target-cell outer membrane. VIDEO ABSTRACT.


Asunto(s)
Antibiosis , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Sistemas de Secreción Tipo V/metabolismo , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/ultraestructura , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Dominios Proteicos , Receptores de Superficie Celular/metabolismo
2.
Annu Rev Biochem ; 86: 873-896, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28426242

RESUMEN

Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Fimbrias Bacterianas/ultraestructura , Poro Nuclear/química , Imagen Óptica/métodos , Células Procariotas/ultraestructura , Archaea/metabolismo , Archaea/ultraestructura , Bacterias/metabolismo , Bacterias/ultraestructura , Sistemas de Secreción Bacterianos/metabolismo , Sistemas de Secreción Bacterianos/ultraestructura , Microscopía por Crioelectrón/historia , Microscopía por Crioelectrón/instrumentación , Tomografía con Microscopio Electrónico/historia , Tomografía con Microscopio Electrónico/instrumentación , Fimbrias Bacterianas/metabolismo , Flagelos/metabolismo , Flagelos/ultraestructura , Historia del Siglo XX , Historia del Siglo XXI , Modelos Moleculares , Poro Nuclear/metabolismo , Poro Nuclear/ultraestructura , Imagen Óptica/historia , Imagen Óptica/instrumentación , Células Procariotas/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína
3.
Cell ; 151(6): 1270-82, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23201141

RESUMEN

In eukaryotes, the differentiation of cellular extensions such as cilia or neuronal axons depends on the partitioning of proteins to distinct plasma membrane domains by specialized diffusion barriers. However, examples of this compartmentalization strategy are still missing for prokaryotes, although complex cellular architectures are also widespread among this group of organisms. This study reveals the existence of a protein-mediated membrane diffusion barrier in the stalked bacterium Caulobacter crescentus. We show that the Caulobacter cell envelope is compartmentalized by macromolecular complexes that prevent the exchange of both membrane and soluble proteins between the polar stalk extension and the cell body. The barrier structures span the cross-sectional area of the stalk and comprise at least four proteins that assemble in a cell-cycle-dependent manner. Their presence is critical for cellular fitness because they minimize the effective cell volume, allowing faster adaptation to environmental changes that require de novo synthesis of envelope proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/citología , Caulobacter crescentus/metabolismo , Membrana Celular/metabolismo , Difusión , Complejos Multiproteicos/metabolismo
4.
EMBO J ; 41(10): e109523, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35301732

RESUMEN

The process by which bacterial cells build their intricate flagellar motility apparatuses has long fascinated scientists. Our understanding of this process comes mainly from studies of purified flagella from two species, Escherichia coli and Salmonella enterica. Here, we used electron cryo-tomography (cryo-ET) to image the assembly of the flagellar motor in situ in diverse Proteobacteria: Hylemonella gracilis, Helicobacter pylori, Campylobacter jejuni, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Shewanella oneidensis. Our results reveal the in situ structures of flagellar intermediates, beginning with the earliest flagellar type III secretion system core complex (fT3SScc) and MS-ring. In high-torque motors of Beta-, Gamma-, and Epsilon-proteobacteria, we discovered novel cytoplasmic rings that interact with the cytoplasmic torque ring formed by FliG. These rings, associated with the MS-ring, assemble very early and persist until the stators are recruited into their periplasmic ring; in their absence the stator ring does not assemble. By imaging mutants in Helicobacter pylori, we found that the fT3SScc proteins FliO and FliQ are required for the assembly of these novel cytoplasmic rings. Our results show that rather than a simple accretion of components, flagellar motor assembly is a dynamic process in which accessory components interact transiently to assist in building the complex nanomachine.


Asunto(s)
Campylobacter jejuni , Helicobacter pylori , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Tomografía con Microscopio Electrónico/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Flagelos/metabolismo , Sistemas de Secreción Tipo III/metabolismo
5.
Cell ; 146(5): 799-812, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21884938

RESUMEN

Two hallmarks of the Firmicute phylum, which includes the Bacilli and Clostridia classes, are their ability to form endospores and their "Gram-positive" single-membraned, thick-cell-wall envelope structure. Acetonema longum is part of a lesser-known family (the Veillonellaceae) of Clostridia that form endospores but that are surprisingly "Gram negative," possessing both an inner and outer membrane and a thin cell wall. Here, we present macromolecular resolution, 3D electron cryotomographic images of vegetative, sporulating, and germinating A. longum cells showing that during the sporulation process, the inner membrane of the mother cell is inverted and transformed to become the outer membrane of the germinating cell. Peptidoglycan persists throughout, leading to a revised, "continuous" model of its role in the process. Coupled with genomic analyses, these results point to sporulation as a mechanism by which the bacterial outer membrane may have arisen and A. longum as a potential "missing link" between single- and double-membraned bacteria.


Asunto(s)
Esporas Bacterianas/citología , Veillonellaceae/crecimiento & desarrollo , Veillonellaceae/metabolismo , Pared Celular/metabolismo , Datos de Secuencia Molecular , Peptidoglicano/metabolismo , Filogenia , Veillonellaceae/citología
6.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074752

RESUMEN

Protein nanomaterial design is an emerging discipline with applications in medicine and beyond. A long-standing design approach uses genetic fusion to join protein homo-oligomer subunits via α-helical linkers to form more complex symmetric assemblies, but this method is hampered by linker flexibility and a dearth of geometric solutions. Here, we describe a general computational method for rigidly fusing homo-oligomer and spacer building blocks to generate user-defined architectures that generates far more geometric solutions than previous approaches. The fusion junctions are then optimized using Rosetta to minimize flexibility. We apply this method to design and test 92 dihedral symmetric protein assemblies using a set of designed homodimers and repeat protein building blocks. Experimental validation by native mass spectrometry, small-angle X-ray scattering, and negative-stain single-particle electron microscopy confirms the assembly states for 11 designs. Most of these assemblies are constructed from designed ankyrin repeat proteins (DARPins), held in place on one end by α-helical fusion and on the other by a designed homodimer interface, and we explored their use for cryogenic electron microscopy (cryo-EM) structure determination by incorporating DARPin variants selected to bind targets of interest. Although the target resolution was limited by preferred orientation effects and small scaffold size, we found that the dual anchoring strategy reduced the flexibility of the target-DARPIN complex with respect to the overall assembly, suggesting that multipoint anchoring of binding domains could contribute to cryo-EM structure determination of small proteins.


Asunto(s)
Nanoestructuras/química , Ingeniería de Proteínas , Proteínas/química , Repetición de Anquirina , Nanoestructuras/ultraestructura , Conformación Proteica en Hélice alfa , Proteínas/genética , Proteínas/ultraestructura
7.
Biophys J ; 122(18): 3768-3782, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37533259

RESUMEN

Mitochondria adapt to changing cellular environments, stress stimuli, and metabolic demands through dramatic morphological remodeling of their shape, and thus function. Such mitochondrial dynamics is often dependent on cytoskeletal filament interactions. However, the precise organization of these filamentous assemblies remains speculative. Here, we apply cryogenic electron tomography to directly image the nanoscale architecture of the cytoskeletal-membrane interactions involved in mitochondrial dynamics in response to damage. We induced mitochondrial damage via membrane depolarization, a cellular stress associated with mitochondrial fragmentation and mitophagy. We find that, in response to acute membrane depolarization, mammalian mitochondria predominantly organize into tubular morphology that abundantly displays constrictions. We observe long bundles of both unbranched actin and septin filaments enriched at these constrictions. We also observed septin-microtubule interactions at these sites and elsewhere, suggesting that these two filaments guide each other in the cytosolic space. Together, our results provide empirical parameters for the architecture of mitochondrial constriction factors to validate/refine existing models and inform the development of new ones.


Asunto(s)
Citoesqueleto , Septinas , Animales , Constricción , Septinas/metabolismo , Citoesqueleto/metabolismo , Mitocondrias/metabolismo , Tomografía , Dinámicas Mitocondriales , Mamíferos/metabolismo
8.
EMBO J ; 38(14): e100957, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31304634

RESUMEN

The self-assembly of cellular macromolecular machines such as the bacterial flagellar motor requires the spatio-temporal synchronization of gene expression with proper protein localization and association of dozens of protein components. In Salmonella and Escherichia coli, a sequential, outward assembly mechanism has been proposed for the flagellar motor starting from the inner membrane, with the addition of each new component stabilizing the previous one. However, very little is known about flagellar disassembly. Here, using electron cryo-tomography and sub-tomogram averaging of intact Legionella pneumophila, Pseudomonas aeruginosa, and Shewanella oneidensis cells, we study flagellar motor disassembly and assembly in situ. We first show that motor disassembly results in stable outer membrane-embedded sub-complexes. These sub-complexes consist of the periplasmic embellished P- and L-rings, and bend the membrane inward while it remains apparently sealed. Additionally, we also observe various intermediates of the assembly process including an inner-membrane sub-complex consisting of the C-ring, MS-ring, and export apparatus. Finally, we show that the L-ring is responsible for reshaping the outer membrane, a crucial step in the flagellar assembly process.


Asunto(s)
Bacterias/citología , Proteínas Bacterianas/metabolismo , Flagelos/ultraestructura , Bacterias/metabolismo , Bacterias/ultraestructura , Membrana Externa Bacteriana/metabolismo , Tomografía con Microscopio Electrónico , Escherichia coli/citología , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Flagelos/metabolismo , Legionella pneumophila/citología , Legionella pneumophila/metabolismo , Legionella pneumophila/ultraestructura , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/ultraestructura , Shewanella/citología , Shewanella/metabolismo , Shewanella/ultraestructura
9.
Cell ; 134(6): 956-68, 2008 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-18805089

RESUMEN

Cell polarization is an integral part of many unrelated bacterial processes. How intrinsic cell polarization is achieved is poorly understood. Here, we provide evidence that Caulobacter crescentus uses a multimeric pole-organizing factor (PopZ) that serves as a hub to concurrently achieve several polarizing functions. During chromosome segregation, polar PopZ captures the ParB*ori complex and thereby anchors sister chromosomes at opposite poles. This step is essential for stabilizing bipolar gradients of a cell division inhibitor and setting up division near midcell. PopZ also affects polar stalk morphogenesis and mediates the polar localization of the morphogenetic and cell cycle signaling proteins CckA and DivJ. Polar accumulation of PopZ, which is central to its polarizing activity, can be achieved independently of division and does not appear to be dictated by the pole curvature. Instead, evidence suggests that localization of PopZ largely relies on PopZ multimerization in chromosome-free regions, consistent with a self-organizing mechanism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/citología , Caulobacter crescentus/metabolismo , Cromosomas Bacterianos/metabolismo , Replicación del ADN , Escherichia coli/metabolismo , Origen de Réplica
10.
Proc Natl Acad Sci U S A ; 117(47): 29702-29711, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33154161

RESUMEN

Members of the tripartite motif (TRIM) protein family have been shown to assemble into structures in both the nucleus and cytoplasm. One TRIM protein family member, TRIM5α, has been shown to form cytoplasmic bodies involved in restricting retroviruses such as HIV-1. Here we applied cryogenic correlated light and electron microscopy, combined with electron cryo-tomography, to intact mammalian cells expressing YFP-rhTRIM5α and found the presence of hexagonal nets whose arm lengths were similar to those of the hexagonal nets formed by purified TRIM5α in vitro. We also observed YFP-rhTRIM5α within a diversity of structures with characteristics expected for organelles involved in different stages of macroautophagy, including disorganized protein aggregations (sequestosomes), sequestosomes flanked by flat double-membraned vesicles (sequestosome:phagophore complexes), sequestosomes within double-membraned vesicles (autophagosomes), and sequestosomes within multivesicular autophagic vacuoles (amphisomes or autolysosomes). Vaults were also seen in these structures, consistent with their role in autophagy. Our data 1) support recent reports that TRIM5α can form both well-organized signaling complexes and nonsignaling aggregates, 2) offer images of the macroautophagy pathway in a near-native state, and 3) reveal that vaults arrive early in macroautophagy.


Asunto(s)
Autofagia/fisiología , Agregado de Proteínas/fisiología , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Restricción Antivirales , Autofagosomas/metabolismo , Línea Celular Tumoral , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Electrones , Células HeLa , Humanos , Microscopía Fluorescente/métodos
11.
Proc Natl Acad Sci U S A ; 117(16): 8941-8947, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32241888

RESUMEN

The bacterial flagellum is an amazing nanomachine. Understanding how such complex structures arose is crucial to our understanding of cellular evolution. We and others recently reported that in several Gammaproteobacterial species, a relic subcomplex comprising the decorated P and L rings persists in the outer membrane after flagellum disassembly. Imaging nine additional species with cryo-electron tomography, here, we show that this subcomplex persists after flagellum disassembly in other phyla as well. Bioinformatic analyses fail to show evidence of any recent horizontal transfers of the P- and L-ring genes, suggesting that this subcomplex and its persistence is an ancient and conserved feature of the flagellar motor. We hypothesize that one function of the P and L rings is to seal the outer membrane after motor disassembly.


Asunto(s)
Bacterias/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Flagelos/genética , Especiación Genética , Bacterias/citología , Bacterias/metabolismo , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/ultraestructura , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Biología Computacional , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Flagelos/metabolismo , Genes Bacterianos , Filogenia
12.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176000

RESUMEN

Proteus mirabilis is a Gram-negative Gammaproteobacterium and a major causative agent of urinary tract infections in humans. It is characterized by its ability to switch between swimming motility in liquid media and swarming on solid surfaces. Here, we used cryo-electron tomography and subtomogram averaging to reveal the structure of the flagellar motor of P. mirabilis at nanometer resolution in intact cells. We found that P. mirabilis has a motor that is structurally similar to those of Escherichia coli and Salmonella enterica, lacking the periplasmic elaborations that characterize other more specialized gammaproteobacterial motors. In addition, no density corresponding to stators was present in the subtomogram average suggesting that the stators are dynamic. Finally, several assembly intermediates of the motor were seen that support the inside-out assembly pathway.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Flagelos , Proteínas Motoras Moleculares , Proteus mirabilis , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Escherichia coli/química , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestructura , Proteus mirabilis/química , Proteus mirabilis/citología , Proteus mirabilis/ultraestructura , Salmonella enterica/química , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Proteínas Motoras Moleculares/ultraestructura
13.
Biophys J ; 121(21): 4221-4228, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36081347

RESUMEN

Acoustic reporter genes based on gas vesicles (GVs) have enabled the use of ultrasound to noninvasively visualize cellular function in vivo. The specific detection of GV signals relative to background acoustic scattering in tissues is facilitated by nonlinear ultrasound imaging techniques taking advantage of the sonomechanical buckling of GVs. However, the effect of geometry on the buckling behavior of GVs under exposure to ultrasound has not been studied. To understand such geometric effects, we developed computational models of GVs of various lengths and diameters and used finite element simulations to predict their threshold buckling pressures and postbuckling deformations. We demonstrated that the GV diameter has an inverse cubic relation to the threshold buckling pressure, whereas length has no substantial effect. To complement these simulations, we experimentally probed the effect of geometry on the mechanical properties of GVs and the corresponding nonlinear ultrasound signals. The results of these experiments corroborate our computational predictions. This study provides fundamental insights into how geometry affects the sonomechanical properties of GVs, which, in turn, can inform further engineering of these nanostructures for high-contrast, nonlinear ultrasound imaging.


Asunto(s)
Acústica , Nanoestructuras , Ultrasonografía/métodos , Nanoestructuras/química
14.
J Bacteriol ; 204(8): e0014422, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35862756

RESUMEN

The bacterial flagellar type III secretion system (fT3SS) is a suite of membrane-embedded and cytoplasmic proteins responsible for building the flagellar motility machinery. Homologous nonflagellar (NF-T3SS) proteins form the injectisome machinery that bacteria use to deliver effector proteins into eukaryotic cells, and other family members were recently reported to be involved in the formation of membrane nanotubes. Here, we describe a novel, evolutionarily widespread, hat-shaped structure embedded in the inner membranes of bacteria, of yet-unidentified function, that is present in species containing fT3SS. Mutant analysis suggests a relationship between this novel structure and the fT3SS, but not the NF-T3SS. While the function of this novel structure remains unknown, we hypothesize that either some of the fT3SS proteins assemble within the hat-like structure, perhaps including the fT3SS core complex, or that fT3SS components regulate other proteins that form part of this novel structure. IMPORTANCE The type III secretion system (T3SS) is a fascinating suite of proteins involved in building diverse macromolecular systems, including the bacterial flagellar motility machine, the injectisome machinery that bacteria use to inject effector proteins into host cells, and probably membrane nanotubes which connect bacterial cells. Here, we accidentally discovered a novel inner membrane-associated complex related to the flagellar T3SS. Examining our lab database, which is comprised of more than 40,000 cryo-tomograms of dozens of species, we discovered that this novel structure is both ubiquitous and ancient, being present in highly divergent classes of bacteria. Discovering a novel, widespread structure related to what are among the best-studied molecular machines in bacteria will open new venues for research aiming at understanding the function and evolution of T3SS proteins.


Asunto(s)
Flagelos , Sistemas de Secreción Tipo III , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Estructuras Bacterianas , Flagelos/metabolismo , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
15.
J Struct Biol ; 214(2): 107860, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35487464

RESUMEN

Cryo-electron tomography provides detailed views of macromolecules in situ. However, imaging a large field of view to provide more cellular context requires reducing magnification during data collection, which in turn restricts the resolution. To circumvent this trade-off between field of view and resolution, we have developed a montage data collection scheme that uniformly distributes the dose throughout the specimen. In this approach, sets of slightly overlapping circular tiles are collected at high magnification and stitched to form a composite projection image at each tilt angle. These montage tilt-series are then reconstructed into massive tomograms with a small pixel size but a large field of view. For proof-of-principle, we applied this method to the thin edge of HeLa cells. Thon rings to better than 10 Å were detected in the montaged tilt-series, and diverse cellular features were observed in the resulting tomograms. These results indicate that the additional dose required by this technique is not prohibitive to performing structural analysis to intermediate resolution across a large field of view. We anticipate that montage tomography will prove particularly useful for lamellae, increase the likelihood of imaging rare cellular events, and facilitate visual proteomics.


Asunto(s)
Tomografía con Microscopio Electrónico , Procesamiento de Imagen Asistido por Computador , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Sustancias Macromoleculares
16.
J Bacteriol ; 203(3)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33199285

RESUMEN

To divide, bacteria must constrict their membranes against significant force from turgor pressure. A tubulin homolog, FtsZ, is thought to drive constriction, but how FtsZ filaments might generate constrictive force in the absence of motor proteins is not well understood. There are two predominant models in the field. In one, FtsZ filaments overlap to form complete rings around the circumference of the cell, and attractive forces cause filaments to slide past each other to maximize lateral contact. In the other, filaments exert force on the membrane by a GTP-hydrolysis-induced switch in conformation from straight to bent. Here, we developed software, ZCONSTRICT, for quantitative three-dimensional (3D) simulations of Gram-negative bacterial cell division to test these two models and identify critical conditions required for them to work. We find that the avidity of any kind of lateral interactions quickly halts the sliding of filaments, so a mechanism such as depolymerization or treadmilling is required to sustain constriction by filament sliding. For filament bending, we find that a mechanism such as the presence of a rigid linker is required to constrain bending to within the division plane and maintain the distance observed in vivo between the filaments and the membrane. Of these two models, only the filament bending model is consistent with our lab's recent observation of constriction associated with a single, short FtsZ filament.IMPORTANCE FtsZ is thought to generate constrictive force to divide the cell, possibly via one of two predominant models in the field. In one, FtsZ filaments overlap to form complete rings which constrict as filaments slide past each other to maximize lateral contact. In the other, filaments exert force on the membrane by switching conformation from straight to bent. Here, we developed software, ZCONSTRICT, for three-dimensional (3D) simulations to test these two models. We find that a mechanism such as depolymerization or treadmilling are required to sustain constriction by filament sliding. For filament bending, we find that a mechanism that constrains bending to within the division plane is required to maintain the distance observed in vivo between the filaments and the membrane.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , División Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Pared Celular , Citoesqueleto/metabolismo , Hidrólisis
17.
J Bacteriol ; 203(3)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33199282

RESUMEN

Cellulose is a widespread component of bacterial biofilms, where its properties of exceptional water retention, high tensile strength, and stiffness prevent dehydration and mechanical disruption of the biofilm. Bacteria in the genus Gluconacetobacter secrete crystalline cellulose, with a structure very similar to that found in plant cell walls. How this higher-order structure is produced is poorly understood. We used cryo-electron tomography and focused-ion-beam milling of native bacterial biofilms to image cellulose-synthesizing Gluconacetobacter hansenii and Gluconacetobacter xylinus bacteria in a frozen-hydrated, near-native state. We confirm previous results suggesting that cellulose crystallization occurs serially following its secretion along one side of the cell, leading to a cellulose ribbon that can reach several micrometers in length and combine with ribbons from other cells to form a robust biofilm matrix. We were able to take direct measurements in a near-native state of the cellulose sheets. Our results also reveal a novel cytoskeletal structure, which we have named the cortical belt, adjacent to the inner membrane and underlying the sites where cellulose is seen emerging from the cell. We found that this structure is not present in other cellulose-synthesizing bacterial species, Agrobacterium tumefaciens and Escherichia coli 1094, which do not produce organized cellulose ribbons. We therefore propose that the cortical belt holds the cellulose synthase complexes in a line to form higher-order cellulose structures, such as sheets and ribbons.IMPORTANCE This work's relevance for the microbiology community is twofold. It delivers for the first time high-resolution near-native snapshots of Gluconacetobacter spp. (previously Komagataeibacter spp.) in the process of cellulose ribbon synthesis, in their native biofilm environment. It puts forward a noncharacterized cytoskeleton element associated with the side of the cell where the cellulose synthesis occurs. This represents a step forward in the understanding of the cell-guided process of crystalline cellulose synthesis, studied specifically in the Gluconacetobacter genus and still not fully understood. Additionally, our successful attempt to use cryo-focused-ion-beam milling through biofilms to image the cells in their native environment will drive the community to use this tool for the morphological characterization of other studied biofilms.


Asunto(s)
Celulosa/ultraestructura , Citoesqueleto/ultraestructura , Gluconacetobacter/metabolismo , Gluconacetobacter/ultraestructura , Acetobacteraceae/metabolismo , Acetobacteraceae/ultraestructura , Biopelículas , Celulosa/metabolismo , Cristalización , Citoesqueleto/metabolismo , Tomografía con Microscopio Electrónico , Electrones , Escherichia coli/metabolismo , Gluconacetobacter xylinus/metabolismo , Gluconacetobacter xylinus/ultraestructura , Microfibrillas
18.
J Struct Biol ; 213(2): 107716, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33713788

RESUMEN

We and others recently developed rapid tilt-series acquisition methods for cryo-electron tomography on a Titan Krios G3i equipped with a single axis holder and a K-series direct electron detector and showed that one of these, the fast-incremental single exposure (FISE) method, significantly accelerates tilt-series acquisition when compared to traditional methods while preserving the quality of the images. Here, we characterize the behavior of our single axis holder in detail during a FISE experiment to optimally balance data quality with speed. We explain our methodology in detail so others can characterize their own stages, and conclude with recommendations for projects with different resolution goals.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía por Crioelectrón/instrumentación , Tomografía con Microscopio Electrónico/instrumentación
19.
EMBO J ; 36(11): 1577-1589, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28438890

RESUMEN

FtsZ, the bacterial homologue of eukaryotic tubulin, plays a central role in cell division in nearly all bacteria and many archaea. It forms filaments under the cytoplasmic membrane at the division site where, together with other proteins it recruits, it drives peptidoglycan synthesis and constricts the cell. Despite extensive study, the arrangement of FtsZ filaments and their role in division continue to be debated. Here, we apply electron cryotomography to image the native structure of intact dividing cells and show that constriction in a variety of Gram-negative bacterial cells, including Proteus mirabilis and Caulobacter crescentus, initiates asymmetrically, accompanied by asymmetric peptidoglycan incorporation and short FtsZ-like filament formation. These results show that a complete ring of FtsZ is not required for constriction and lead us to propose a model for FtsZ-driven division in which short dynamic FtsZ filaments can drive initial peptidoglycan synthesis and envelope constriction at the onset of cytokinesis, later increasing in length and number to encircle the division plane and complete constriction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/citología , Caulobacter crescentus/crecimiento & desarrollo , Citocinesis , Proteínas del Citoesqueleto/metabolismo , Multimerización de Proteína , Proteus mirabilis/citología , Proteus mirabilis/crecimiento & desarrollo , Pared Celular/química , Pared Celular/metabolismo , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Peptidoglicano/análisis , Peptidoglicano/biosíntesis
20.
Proc Natl Acad Sci U S A ; 115(14): E3246-E3255, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29555764

RESUMEN

Bacterial nanowires have garnered recent interest as a proposed extracellular electron transfer (EET) pathway that links the bacterial electron transport chain to solid-phase electron acceptors away from the cell. Recent studies showed that Shewanella oneidensis MR-1 produces outer membrane (OM) and periplasmic extensions that contain EET components and hinted at their possible role as bacterial nanowires. However, their fine structure and distribution of cytochrome electron carriers under native conditions remained unclear, making it difficult to evaluate the potential electron transport (ET) mechanism along OM extensions. Here, we report high-resolution images of S. oneidensis OM extensions, using electron cryotomography (ECT). We developed a robust method for fluorescence light microscopy imaging of OM extension growth on electron microscopy grids and used correlative light and electron microscopy to identify and image the same structures by ECT. Our results reveal that S. oneidensis OM extensions are dynamic chains of interconnected outer membrane vesicles (OMVs) with variable dimensions, curvature, and extent of tubulation. Junction densities that potentially stabilize OMV chains are seen between neighboring vesicles in cryotomograms. By comparing wild type and a cytochrome gene deletion mutant, our ECT results provide the likely positions and packing of periplasmic and outer membrane proteins consistent with cytochromes. Based on the observed cytochrome packing density, we propose a plausible ET path along the OM extensions involving a combination of direct hopping and cytochrome diffusion. A mean-field calculation, informed by the observed ECT cytochrome density, supports this proposal by revealing ET rates on par with a fully packed cytochrome network.


Asunto(s)
Microscopía por Crioelectrón/métodos , Citocromos/metabolismo , Electrones , Nanocables/ultraestructura , Shewanella/metabolismo , Shewanella/ultraestructura , Transporte de Electrón , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA