Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 514(7523): 503-7, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25141178

RESUMEN

Total or near-total loss of insulin-producing ß-cells occurs in type 1 diabetes. Restoration of insulin production in type 1 diabetes is thus a major medical challenge. We previously observed in mice in which ß-cells are completely ablated that the pancreas reconstitutes new insulin-producing cells in the absence of autoimmunity. The process involves the contribution of islet non-ß-cells; specifically, glucagon-producing α-cells begin producing insulin by a process of reprogramming (transdifferentiation) without proliferation. Here we show the influence of age on ß-cell reconstitution from heterologous islet cells after near-total ß-cell loss in mice. We found that senescence does not alter α-cell plasticity: α-cells can reprogram to produce insulin from puberty through to adulthood, and also in aged individuals, even a long time after ß-cell loss. In contrast, before puberty there is no detectable α-cell conversion, although ß-cell reconstitution after injury is more efficient, always leading to diabetes recovery. This process occurs through a newly discovered mechanism: the spontaneous en masse reprogramming of somatostatin-producing δ-cells. The juveniles display 'somatostatin-to-insulin' δ-cell conversion, involving dedifferentiation, proliferation and re-expression of islet developmental regulators. This juvenile adaptability relies, at least in part, upon the combined action of FoxO1 and downstream effectors. Restoration of insulin producing-cells from non-ß-cell origins is thus enabled throughout life via δ- or α-cell spontaneous reprogramming. A landscape with multiple intra-islet cell interconversion events is emerging, offering new perspectives for therapy.


Asunto(s)
Envejecimiento/fisiología , Transdiferenciación Celular , Diabetes Mellitus Experimental/patología , Células Secretoras de Insulina/citología , Insulina/biosíntesis , Regeneración , Células Secretoras de Somatostatina/citología , Animales , Desdiferenciación Celular , Proliferación Celular , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/terapia , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones , Maduración Sexual , Somatostatina/biosíntesis , Somatostatina/metabolismo , Células Secretoras de Somatostatina/metabolismo
2.
Development ; 139(1): 33-45, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22096075

RESUMEN

Neurog3-induced Dll1 expression in pancreatic endocrine progenitors ostensibly activates Hes1 expression via Notch and thereby represses Neurog3 and endocrine differentiation in neighboring cells by lateral inhibition. Here we show in mouse that Dll1 and Hes1 expression deviate during regionalization of early endoderm, and later during early pancreas morphogenesis. At that time, Ptf1a activates Dll1 in multipotent pancreatic progenitor cells (MPCs), and Hes1 expression becomes Dll1 dependent over a brief time window. Moreover, Dll1, Hes1 and Dll1/Hes1 mutant phenotypes diverge during organ regionalization, become congruent at early bud stages, and then diverge again at late bud stages. Persistent pancreatic hypoplasia in Dll1 mutants after eliminating Neurog3 expression and endocrine development, together with reduced proliferation of MPCs in both Dll1 and Hes1 mutants, reveals that the hypoplasia is caused by a growth defect rather than by progenitor depletion. Unexpectedly, we find that Hes1 is required to sustain Ptf1a expression, and in turn Dll1 expression in early MPCs. Our results show that Ptf1a-induced Dll1 expression stimulates MPC proliferation and pancreatic growth by maintaining Hes1 expression and Ptf1a protein levels.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Páncreas/embriología , Células Secretoras de Polipéptido Pancreático/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Bromodesoxiuridina , Proteínas de Unión al Calcio , Inmunoprecipitación de Cromatina , Galactósidos , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Indoles , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Células Madre/citología , Factor de Transcripción HES-1
3.
Proc Natl Acad Sci U S A ; 109(19): 7356-61, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22529374

RESUMEN

During early pancreatic development, Notch signaling represses differentiation of endocrine cells and promotes proliferation of Nkx6-1(+)Ptf1a(+) multipotent progenitor cells (MPCs). Later, antagonistic interactions between Nkx6 transcription factors and Ptf1a function to segregate MPCs into distal Nkx6-1(-)Ptf1a(+) acinar progenitors and proximal Nkx6-1(+)Ptf1a(-) duct and ß-cell progenitors. Distal cells are initially multipotent, but evolve into unipotent, acinar cell progenitors. Conversely, proximal cells are bipotent and give rise to duct cells and late-born endocrine cells, including the insulin producing ß-cells. However, signals that regulate proximodistal (P-D) patterning and thus formation of ß-cell progenitors are unknown. Here we show that Mind bomb 1 (Mib1) is required for correct P-D patterning of the developing pancreas and ß-cell formation. We found that endoderm-specific inactivation of Mib1 caused a loss of Nkx6-1(+)Ptf1a(-) and Hnf1ß(+) cells and a corresponding loss of Neurog3(+) endocrine progenitors and ß-cells. An accompanying increase in Nkx6-1(-)Ptf1a(+) and amylase(+) cells, occupying the proximal domain, suggests that proximal cells adopt a distal fate in the absence of Mib1 activity. Impeding Notch-mediated transcriptional activation by conditional expression of dominant negative Mastermind-like 1 (Maml1) resulted in a similarly distorted P-D patterning and suppressed ß-cell formation, as did conditional inactivation of the Notch target gene Hes1. Our results reveal iterative use of Notch in pancreatic development to ensure correct P-D patterning and adequate ß-cell formation.


Asunto(s)
Embrión de Mamíferos/metabolismo , Células Secretoras de Insulina/metabolismo , Páncreas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Linaje de la Célula , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 1-beta del Hepatocito/genética , Factor Nuclear 1-beta del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Páncreas/citología , Páncreas/embriología , Receptores Notch/genética , Receptores Notch/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética
4.
Proc Natl Acad Sci U S A ; 106(24): 9715-20, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19487660

RESUMEN

Neurog3 (Neurogenin 3 or Ngn3) is both necessary and sufficient to induce endocrine islet cell differentiation from embryonic pancreatic progenitors. Since robust Neurog3 expression has not been detected in hormone-expressing cells, Neurog3 is used as an endocrine progenitor marker and regarded as dispensable for the function of differentiated islet cells. Here we used 3 independent lines of Neurog3 knock-in reporter mice and mRNA/protein-based assays to examine Neurog3 expression in hormone-expressing islet cells. Neurog3 mRNA and protein are detected in hormone-producing cells at both embryonic and adult stages. Significantly, inactivating Neurog3 in insulin-expressing beta cells at embryonic stages or in Pdx1-expressing islet cells in adults impairs endocrine function, a phenotype that is accompanied by reduced expression of several Neurog3 target genes that are essential for islet cell differentiation, maturation, and function. These findings demonstrate that Neurog3 is required not only for initiating endocrine cell differentiation, but also for promoting islet cell maturation and maintaining islet function.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Western Blotting , Técnica del Anticuerpo Fluorescente , Técnicas de Sustitución del Gen , Prueba de Tolerancia a la Glucosa , Inmunohistoquímica , Islotes Pancreáticos/fisiología , Ratones , Proteínas del Tejido Nervioso/genética , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Mol Endocrinol ; 30(1): 133-43, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26649805

RESUMEN

Diabetes is characterized by insulin insufficiency due to a relative paucity of functional ß-cell mass. Thus, strategies for increasing ß-cell mass in situ are sought-after for therapeutic purposes. Pregnancy is a physiological state capable of inducing robust ß-cell mass expansion, however, the mechanisms driving this expansion are not fully understood. Thus, the aim of this study was to characterize pregnancy-induced changes in the islet proteome at the peak of ß-cell proliferation in mice. Islets from pregnant and nonpregnant littermates were compared via 2 proteomic strategies. In vivo pulsed stable isotope labeling of amino acids in cell culture was used to monitor de novo protein synthesis during the first 14.5 days of pregnancy. In parallel, protein abundance was determined using ex vivo dimethyl labelling at gestational day 14.5. Comparison of the 2 datasets revealed 170 islet proteins to be up regulated as a response to pregnancy. These included several proteins, not previously associated with pregnancy-induced islet expansion, such as CLIC1, STMN1, MCM6, PPIB, NEDD4, and HLTF. Confirming the validity of our approach, we also identified proteins encoded by genes known to be associated with pregnancy-induced islet expansion, such as CHGB, IGFBP5, MATN2, EHHADH, IVD, and BMP1. Bioinformatic analyses demonstrated enrichment and activation of the biological functions: "protein synthesis" and "proliferation," and predicted the transcription factors HNF4α, MYC, MYCN, E2F1, NFE2L2, and HNF1α as upstream regulators of the observed expressional changes. As the first characterization of the islet-proteome during pregnancy, this study provides novel insight into the mechanisms involved in promoting pregnancy-induced ß-cell mass expansion and function.


Asunto(s)
Proliferación Celular/fisiología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Proteómica/métodos , Animales , Femenino , Ratones , Embarazo
6.
Diabetes ; 51(12): 3561-7, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12453914

RESUMEN

Variations in the calpain-10 gene (CAPN10) have been identified among Mexican-Americans, and an at-risk haplotype combination (112/121) defined by three polymorphisms, UCSNP-43, -19, and -63, confers increased risk of type 2 diabetes. Here we examine the three polymorphisms in 1,594 Scandinavian subjects, including 409 type 2 diabetic patients, 200 glucose-tolerant control subjects, 322 young healthy subjects, 206 glucose-tolerant offspring of diabetic patients, and 457 glucose-tolerant 70-year-old men. The frequency of the 112/121 combination was not significantly different in 409 type 2 diabetic subjects compared with 200 glucose-tolerant control subjects (0.06 vs. 0.05; odds ratio 1.32 [95% CI 0.58-3.30]). In glucose-tolerant subjects, neither the single-nucleotide polymorphisms individually nor the 112/121 combination were associated with alterations in plasma glucose, serum insulin, or serum C-peptide levels at fasting or during an oral glucose tolerance test, estimates of insulin sensitivity, or glucose-induced insulin secretion. In conclusion, the frequency of the 112/121 at-risk haplotype of CAPN10 is low among Scandinavians and we were unable to demonstrate significant associations between the CAPN10 variants and type 2 diabetes, insulin resistance, or impaired insulin secretion.


Asunto(s)
Calpaína/genética , Cromosomas Humanos Par 2/genética , Diabetes Mellitus Tipo 2/genética , Variación Genética , Resistencia a la Insulina/genética , Insulina/metabolismo , Población Blanca/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Grupos Control , Femenino , Predisposición Genética a la Enfermedad , Glucosa/metabolismo , Haplotipos , Humanos , Secreción de Insulina , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo Genético/fisiología , Países Escandinavos y Nórdicos
8.
FEBS Lett ; 528(1-3): 241-5, 2002 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-12297313

RESUMEN

The helix-loop-helix transcription factor NeuroD1 (also known as Beta2) is involved in beta-cell survival during development and insulin gene transcription in adults. Here we show NeuroD1 is primarily cytoplasmic at non-stimulating glucose concentrations (i.e. 3 mM) in MIN6 beta-cells and nuclear under stimulating conditions (i.e. 20 mM). Quantification revealed that NeuroD1 was in 40-45% of the nuclei at 3 mM and 80-90% at 20 mM. Treatment with the MEK inhibitor PD98059 or substitution of a serine for an alanine at a potential mitogen-activated protein kinase phosphorylation site (S274) in NeuroD1 significantly increased the cytoplasmic level at 20 mM glucose. The rise in NeuroD1-mediated transcription in response to glucose also correlated with the change in sub-cellular localization, a response attenuated by PD98059. The data strongly suggest that glucose-stimulation of the MEK-ERK signalling pathway influences NeuroD1 activity at least partially through effects on sub-cellular localization.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Glucosa/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transactivadores/metabolismo , Factores de Transcripción , Sustitución de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Sitios de Unión/genética , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Insulina/genética , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Transactivadores/química , Transactivadores/genética
9.
Diabetes ; 60(4): 1349-53, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21378176

RESUMEN

OBJECTIVE: NEUROG3 plays a central role in the development of both pancreatic islets and enteroendocrine cells. Homozygous hypomorphic missense mutations in NEUROG3 have been recently associated with a rare form of congenital malabsorptive diarrhea secondary to enteroendocrine cell dysgenesis. Interestingly, the patients did not develop neonatal diabetes but childhood-onset diabetes. We hypothesized that null mutations in NEUROG3 might be responsible for the disease in a patient with permanent neonatal diabetes and severe congenital malabsorptive diarrhea. RESEARCH DESIGN AND METHODS: The single coding exon of NEUROG3 was amplified and sequenced from genomic DNA. The mutant protein isoforms were functionally characterized by measuring their ability to bind to an E-box element in the NEUROD1 promoter in vitro and to induce ectopic endocrine cell formation and cell delamination after in ovo chicken endoderm electroporation. RESULTS: Two different heterozygous point mutations in NEUROG3 were identified in the proband [c.82G>T (p.E28X) and c.404T>C (p.L135P)], each being inherited from an unaffected parent. Both in vitro and in vivo functional studies indicated that the mutant isoforms are biologically inactive. In keeping with this, no enteroendocrine cells were detected in intestinal biopsy samples from the patient. CONCLUSIONS: Severe deficiency of neurogenin 3 causes a rare novel subtype of permanent neonatal diabetes. This finding confirms the essential role of NEUROG3 in islet development and function in humans.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diabetes Mellitus/genética , Proteínas del Tejido Nervioso/genética , Animales , Embrión de Pollo , Análisis Mutacional de ADN , Electroporación , Células Enteroendocrinas , Exones/genética , Humanos , Recién Nacido , Mutación , Mutación Puntual/genética , Reacción en Cadena de la Polimerasa , Isoformas de Proteínas/genética
10.
Mech Dev ; 127(3-4): 220-34, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19969077

RESUMEN

Fgf10 is a critical component of mesenchymal-to-epithelial signaling during endodermal development. In the Fgf10 null pancreas, the embryonic progenitor population fails to expand, while ectopic Fgf10 expression forces progenitor arrest and organ hyperplasia. Using a conditional Fgf10 gain-of-function model, we observed that the timing of Fgf10 expression affected the cellular competence of the arrested pancreatic progenitors. We present evidence that the Fgf10-arrested progenitor state is reversible and that terminal differentiation resumes upon cessation of Fgf10 production. However, competence towards the individual pancreatic cell lineages depended upon the gestational time of when Fgf10 expression was attenuated. This revealed a competence window of endocrine and ductal cell formation that coincided with the pancreatic secondary transition between E13.5 and E15.5. We demonstrate that maintaining the Fgf10-arrested state during this period leads to permanent loss of competence for the endocrine and ductal cell fates. However, competence of the arrested progenitors towards the exocrine cell fate was retained throughout the secondary transition. Sustained Fgf10 expression caused irreversible loss of Ngn3 expression, which may underlie the loss of endocrine competence. Maintenance of exocrine competence may be attributable to continuous Ptf1a expression in the Fgf10-arrested progenitors. This may explain the rapid induction of Bhlhb8, a normally distalized cell intrinsic marker, following loss of ectopic Fgf10 expression. We conclude that the window for endocrine and ductal cell competence ceases during the secondary transition in pancreatic development.


Asunto(s)
Diferenciación Celular/fisiología , Factor 10 de Crecimiento de Fibroblastos/fisiología , Páncreas/citología , Animales , Linaje de la Célula , Doxiciclina/farmacología , Factor 10 de Crecimiento de Fibroblastos/biosíntesis , Factor 10 de Crecimiento de Fibroblastos/genética , Ratones , Ratones Transgénicos
11.
Diabetes ; 57(6): 1605-17, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18375440

RESUMEN

OBJECTIVE: Chronic pancreatitis, characterized by pancreatic exocrine tissue destruction with initial maintenance of islets, eventually leads to insulin-dependent diabetes in most patients. Mice deficient for the transcription factors E2F1 and E2F2 suffer from a chronic pancreatitis-like syndrome and become diabetic. Surprisingly, onset of diabetes can be prevented through bone marrow transplantation. The goal of the described studies was to determine the hematopoietic cell type responsible for maintaining islets and the associated mechanism of this protection. RESEARCH DESIGN AND METHODS: Mouse models of acute and chronic pancreatitis, together with mice genetically deficient for macrophage production, were used to determine roles for macrophages in islet angiogenesis and maintenance. RESULTS: We demonstrate that macrophages are essential for preventing endocrine cell loss and diabetes. Macrophages expressing matrix metalloproteinase-9 migrate to the deteriorating pancreas. E2f1/E2f2 mutant mice transplanted with wild-type, but not macrophage-deficient colony stimulating factor 1 receptor mutant (Csf1r(-/-)), bone marrow exhibit increased angiogenesis and proliferation within islets, coinciding with increased islet mass. A similar macrophage dependency for islet and islet vasculature maintenance is observed during caerulein-induced pancreatitis. CONCLUSIONS: These findings demonstrate that macrophages promote islet angiogenesis and protect against islet loss during exocrine degeneration, could explain why most patients with chronic pancreatitis develop diabetes, and suggest an avenue for preventing pancreatitis-associated diabetes.


Asunto(s)
Trasplante de Médula Ósea , Diabetes Mellitus/prevención & control , Islotes Pancreáticos/irrigación sanguínea , Macrófagos/fisiología , Animales , Diabetes Mellitus/patología , Factor de Transcripción E2F1/deficiencia , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F2/deficiencia , Factor de Transcripción E2F2/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Páncreas/patología , Pancreatitis/genética , Pancreatitis/prevención & control , Pancreatitis Aguda Necrotizante/genética , Pancreatitis Aguda Necrotizante/prevención & control , Pancreatitis Crónica/genética , Pancreatitis Crónica/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA