Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2311155, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516961

RESUMEN

Herein, a Safe-and-Sustainable-by-Design (SSbD) screening strategy on four different inorganic aerogel mats and two conventional mineral wools for ranking purposes is demonstrated. Given that they do not consist of particles, the release is first simulated, addressing three occupational exposure scenarios, realistic for their intended use as building insulators. No exposure to consumers nor to the environment is foreseen in the use phase, however, aerosols may be released during mat installation, posing an inhalation risk for workers. All four aerogel mats release more respirable dust than the benchmark materials and 60% thereof deposits in the alveolar region according to modelling tools. The collected aerogel dust allows for subsequent screening of hazard implications via two abiotic assays: 1) surface reactivity in human blood serum; 2) biodissolution kinetics in lung simulant fluids. Both aerogels and conventional insulators show similar surface reactivity. Differences in biodissolution are influenced by the specifically designed organic and inorganic structural modifications. Aerogel mats are better-performing insulators (2-fold lower thermal conductivity than the benchmark) However, this work demonstrates how investment decisions can be balanced with safety and sustainability aspects. Concepts of analogy and similarity thus support easily accessible methods to companies for safe and economically viable innovation with advanced materials.

2.
Part Fibre Toxicol ; 20(1): 4, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650530

RESUMEN

BACKGROUND: Acute phase response (APR) is characterized by a change in concentration of different proteins, including C-reactive protein and serum amyloid A (SAA) that can be linked to both exposure to metal oxide nanomaterials and risk of cardiovascular diseases. In this study, we intratracheally exposed mice to ZnO, CuO, Al2O3, SnO2 and TiO2 and carbon black (Printex 90) nanomaterials with a wide range in phagolysosomal solubility. We subsequently assessed neutrophil numbers, protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, Saa3 and Saa1 mRNA levels in lung and liver tissue, respectively, and SAA3 and SAA1/2 in plasma. Endpoints were analyzed 1 and 28 days after exposure, including histopathology of lung and liver tissues. RESULTS: All nanomaterials induced pulmonary inflammation after 1 day, and exposure to ZnO, CuO, SnO2, TiO2 and Printex 90 increased Saa3 mRNA levels in lungs and Saa1 mRNA levels in liver. Additionally, CuO, SnO2, TiO2 and Printex 90 increased plasma levels of SAA3 and SAA1/2. Acute phase response was predicted by deposited surface area for insoluble metal oxides, 1 and 28 days post-exposure. CONCLUSION: Soluble and insoluble metal oxides induced dose-dependent APR with different time dependency. Neutrophil influx, Saa3 mRNA levels in lung tissue and plasma SAA3 levels correlated across all studied nanomaterials, suggesting that these endpoints can be used as biomarkers of acute phase response and cardiovascular disease risk following exposure to soluble and insoluble particles.


Asunto(s)
Nanoestructuras , Óxido de Zinc , Ratones , Animales , Reacción de Fase Aguda/inducido químicamente , Óxido de Zinc/toxicidad , Óxido de Zinc/metabolismo , Pulmón/metabolismo , Nanoestructuras/toxicidad , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Regul Toxicol Pharmacol ; 139: 105360, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36804527

RESUMEN

Over the recent years, EU chemicals legislation, guidance and test guidelines have been developed or adapted for nanomaterials to facilitate safe use of nanomaterials. This paper provides an overview of the information requirements across different EU regulatory areas. For each information requirement, a group of 22 experts identified potential needs for further action to accommodate guidance and test guidelines to nanomaterials. Eleven different needs for action were identified, capturing twenty-two information requirements that are specific to nanomaterials and relevant to multiple regulatory areas. These were further reduced to three overarching issues: 1) resolve issues around nanomaterial dispersion stability and dosing in toxicity testing, in particular for human health endpoints, 2) further develop tests or guidance on degradation and transformation of organic nanomaterials or nanomaterials with organic components, and 3) further develop tests and guidance to measure (a)cellular reactivity of nanomaterials. Efforts towards addressing these issues will result in better fit-for-purpose test methods for (EU) regulatory compliance. Moreover, it secures validity of hazard and risk assessments of nanomaterials. The results of the study accentuate the need for a structural process of identification of information needs and knowledge generation, preferably as part of risk governance and closely connected to technological innovation policy.


Asunto(s)
Seguridad Química , Nanoestructuras , Humanos , Nanoestructuras/toxicidad , Políticas , Medición de Riesgo/métodos , Pruebas de Toxicidad/métodos
4.
J Nanobiotechnology ; 19(1): 193, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183029

RESUMEN

BACKGROUND: With the continued integration of engineered nanomaterials (ENMs) into everyday applications, it is important to understand their potential for inducing adverse human health effects. However, standard in vitro hazard characterisation approaches suffer limitations for evaluating ENM and so it is imperative to determine these potential hazards under more physiologically relevant and realistic exposure scenarios in target organ systems, to minimise the necessity for in vivo testing. The aim of this study was to determine if acute (24 h) and prolonged (120 h) exposures to five ENMs (TiO2, ZnO, Ag, BaSO4 and CeO2) would have a significantly different toxicological outcome (cytotoxicity, (pro-)inflammatory and genotoxic response) upon 3D human HepG2 liver spheroids. In addition, this study evaluated whether a more realistic, prolonged fractionated and repeated ENM dosing regime induces a significantly different toxicity outcome in liver spheroids as compared to a single, bolus prolonged exposure. RESULTS: Whilst it was found that the five ENMs did not impede liver functionality (e.g. albumin and urea production), induce cytotoxicity or an IL-8 (pro-)inflammatory response, all were found to cause significant genotoxicity following acute exposure. Most statistically significant genotoxic responses were not dose-dependent, with the exception of TiO2. Interestingly, the DNA damage effects observed following acute exposures, were not mirrored in the prolonged exposures, where only 0.2-5.0 µg/mL of ZnO ENMs were found to elicit significant (p ≤ 0.05) genotoxicity. When fractionated, repeated exposure regimes were performed with the test ENMs, no significant (p ≥ 0.05) difference was observed when compared to the single, bolus exposure regime. There was < 5.0% cytotoxicity observed across all exposures, and the mean difference in IL-8 cytokine release and genotoxicity between exposure regimes was 3.425 pg/mL and 0.181%, respectively. CONCLUSION: In conclusion, whilst there was no difference between a single, bolus or fractionated, repeated ENM prolonged exposure regimes upon the toxicological output of 3D HepG2 liver spheroids, there was a difference between acute and prolonged exposures. This study highlights the importance of evaluating more realistic ENM exposures, thereby providing a future in vitro approach to better support ENM hazard assessment in a routine and easily accessible manner.


Asunto(s)
Daño del ADN/efectos de los fármacos , Hígado/patología , Nanoestructuras/administración & dosificación , Nanoestructuras/toxicidad , Albúminas , Proliferación Celular , Citocinas/metabolismo , Células Hep G2 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Hígado/metabolismo , Pruebas de Mutagenicidad , Tamaño de la Partícula , Urea
5.
Small ; 16(6): e1904749, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31913582

RESUMEN

Advanced material development, including at the nanoscale, comprises costly and complex challenges coupled to ensuring human and environmental safety. Governmental agencies regulating safety have announced interest toward acceptance of safety data generated under the collective term New Approach Methodologies (NAMs), as such technologies/approaches offer marked potential to progress the integration of safety testing measures during innovation from idea to product launch of nanomaterials. Divided in overall eight main categories, searchable databases for grouping and read across purposes, exposure assessment and modeling, in silico modeling of physicochemical structure and hazard data, in vitro high-throughput and high-content screening assays, dose-response assessments and modeling, analyses of biological processes and toxicity pathways, kinetics and dose extrapolation, consideration of relevant exposure levels and biomarker endpoints typify such useful NAMs. Their application generally agrees with articulated stakeholder needs for improvement of safety testing procedures. They further fit for inclusion and add value in nanomaterials risk assessment tools. Overall 37 of 50 evaluated NAMs and tiered workflows applying NAMs are recommended for considering safer-by-design innovation, including guidance to the selection of specific NAMs in the eight categories. An innovation funnel enriched with safety methods is ultimately proposed under the central aim of promoting rigorous nanomaterials innovation.


Asunto(s)
Ciencia de los Materiales , Nanoestructuras , Seguridad , Pruebas de Toxicidad , Simulación por Computador , Humanos , Ciencia de los Materiales/métodos , Ciencia de los Materiales/tendencias , Nanoestructuras/normas , Medición de Riesgo
6.
Part Fibre Toxicol ; 16(1): 23, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31182125

RESUMEN

BACKGROUND: Little is known about the exposure levels and adverse health effects of occupational exposure to airplane emissions. Diesel exhaust particles are classified as carcinogenic to humans and jet engines produce potentially similar soot particles. Here, we evaluated the potential occupational exposure risk by analyzing particles from a non-commercial airfield and from the apron of a commercial airport. Toxicity of the collected particles was evaluated alongside NIST standard reference diesel exhaust particles (NIST2975) in terms of acute phase response, pulmonary inflammation, and genotoxicity after single intratracheal instillation in mice. RESULTS: Particle exposure levels were up to 1 mg/m3 at the non-commercial airfield. Particulate matter from the non-commercial airfield air consisted of primary and aggregated soot particles, whereas commercial airport sampling resulted in a more heterogeneous mixture of organic compounds including salt, pollen and soot, reflecting the complex occupational exposure at an apron. The particle contents of polycyclic aromatic hydrocarbons and metals were similar to the content in NIST2975. Mice were exposed to doses 6, 18 and 54 µg alongside carbon black (Printex 90) and NIST2975 and euthanized after 1, 28 or 90 days. Dose-dependent increases in total number of cells, neutrophils, and eosinophils in bronchoalveolar lavage fluid were observed on day 1 post-exposure for all particles. Lymphocytes were increased for all four particle types on 28 days post-exposure as well as for neutrophil influx for jet engine particles and carbon black nanoparticles. Increased Saa3 mRNA levels in lung tissue and increased SAA3 protein levels in plasma were observed on day 1 post-exposure. Increased levels of DNA strand breaks in bronchoalveolar lavage cells and liver tissue were observed for both particles, at single dose levels across doses and time points. CONCLUSIONS: Pulmonary exposure of mice to particles collected at two airports induced acute phase response, inflammation, and genotoxicity similar to standard diesel exhaust particles and carbon black nanoparticles, suggesting similar physicochemical properties and toxicity of jet engine particles and diesel exhaust particles. Given this resemblance as well as the dose-response relationship between diesel exhaust exposure and lung cancer, occupational exposure to jet engine emissions at the two airports should be minimized.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Aeropuertos , Daño del ADN , Pulmón/efectos de los fármacos , Material Particulado/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Ocupacionales del Aire/análisis , Contaminantes Ocupacionales del Aire/farmacocinética , Animales , Biomarcadores/sangre , Líquido del Lavado Bronquioalveolar/citología , Femenino , Pulmón/metabolismo , Pulmón/ultraestructura , Ratones Endogámicos C57BL , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Material Particulado/análisis , Material Particulado/farmacocinética , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/farmacocinética , Proteína Amiloide A Sérica/análisis , Factores de Tiempo , Distribución Tisular
7.
Adv Exp Med Biol ; 947: 3-23, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28168663

RESUMEN

Numerous types of engineered nanomaterials (ENMs) are commercially available and developments move towards producing more advanced nanomaterials with tailored properties. Such advanced nanomaterials may include chemically doped or modified derivatives with specific surface chemistries; also called higher generation or multiconstituent nanomaterials. To fully enjoy the benefits of nanomaterials, appropriate characterisation of ENMs is necessary for many aspects of their production, use, testing and reporting to regulatory bodies. This chapter introduces both structural and textural properties of nanomaterials with a focus on demonstrating the information that can be achieved by analysis of primary physicochemical characteristics and how such information is critical to understand or assess the possible toxicity of engineered nanomaterials. Many of characterization methods are very specific to obtain particular characteristics and therefore the most widely used techniques are explained and demonstrated.


Asunto(s)
Nanoestructuras/química , Fenómenos Químicos , Humanos
8.
Part Fibre Toxicol ; 13(1): 37, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27357593

RESUMEN

BACKGROUND: The toxicity of dusts from mechanical abrasion of multi-walled carbon nanotube (CNT) epoxy nanocomposites is unknown. We compared the toxic effects of dusts generated by sanding of epoxy composites with and without CNT. The used CNT type was included for comparison. METHODS: Mice received a single intratracheal instillation of 18, 54 and 162 µg of CNT or 54, 162 and 486 µg of the sanding dust from epoxy composite with and without CNT. DNA damage in lung and liver, lung inflammation and liver histology were evaluated 1, 3 and 28 days after intratracheal instillation. Furthermore, the mRNA expression of interleukin 6 and heme oxygenase 1 was measured in the lungs and serum amyloid A1 in the liver. Printex 90 carbon black was included as a reference particle. RESULTS: Pulmonary exposure to CNT and all dusts obtained by sanding epoxy composite boards resulted in recruitment of inflammatory cells into lung lumen: On day 1 after instillation these cells were primarily neutrophils but on day 3, eosinophils contributed significantly to the cell population. There were still increased numbers of neutrophils 28 days after intratracheal instillation of the highest dose of the epoxy dusts. Both CNT and epoxy dusts induced DNA damage in lung tissue up to 3 days after intratracheal instillation but not in liver tissue. There was no additive effect of adding CNT to epoxy resins for any of the pulmonary endpoints. In livers of mice instilled with CNT and epoxy dust with CNTs inflammatory and necrotic histological changes were observed, however, not in mice instilled with epoxy dust without CNT. CONCLUSIONS: Pulmonary deposition of epoxy dusts with and without CNT induced inflammation and DNA damage in lung tissue. There was no additive effect of adding CNT to epoxies for any of the pulmonary endpoints. However, hepatic inflammatory and necrotic histopathological changes were seen in mice instilled with sanding dust from CNT-containing epoxy but not in mice instilled with reference epoxy.


Asunto(s)
Compuestos Epoxi/toxicidad , Pulmón/efectos de los fármacos , Nanotubos de Carbono/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/citología , Endotoxinas/toxicidad , Hígado/efectos de los fármacos , Hígado/patología , Pulmón/patología , Ratones , Microscopía Electrónica de Rastreo
9.
Artículo en Inglés | MEDLINE | ID: mdl-26397955

RESUMEN

Selecting appropriate ways of bringing engineered nanoparticles (ENP) into aqueous dispersion is a main obstacle for testing, and thus for understanding and evaluating, their potential adverse effects to the environment and human health. Using different methods to prepare (stock) dispersions of the same ENP may be a source of variation in the toxicity measured. Harmonization and standardization of dispersion methods applied in mammalian and ecotoxicity testing are needed to ensure a comparable data quality and to minimize test artifacts produced by modifications of ENP during the dispersion preparation process. Such harmonization and standardization will also enhance comparability among tests, labs, and studies on different types of ENP. The scope of this review was to critically discuss the essential parameters in dispersion protocols for ENP. The parameters are identified from individual scientific studies and from consensus reached in larger scale research projects and international organizations. A step-wise approach is proposed to develop tailored dispersion protocols for ecotoxicological and mammalian toxicological testing of ENP. The recommendations of this analysis may serve as a guide to researchers, companies, and regulators when selecting, developing, and evaluating the appropriateness of dispersion methods applied in mammalian and ecotoxicity testing. However, additional experimentation is needed to further document the protocol parameters and investigate to what extent different stock dispersion methods affect ecotoxicological and mammalian toxicological responses of ENP.


Asunto(s)
Ecotoxicología , Nanopartículas/análisis , Contaminantes Químicos del Agua/análisis
10.
Ann Occup Hyg ; 59(6): 749-63, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25863226

RESUMEN

The paint and coatings industry is known to have significant particulate matter (PM) emissions to the atmosphere. However, exposure levels are not studied in detail especially when considering submicrometre (PM1) and ultrafine particles (particle diameter below 100nm). The evidence is increasing that pulmonary exposures to these size fractions are potentially very harmful. This study investigates particle emissions during powder handling and paint mixing in two paint factories at two mixing stations in each factory. In each case measurements were made simultaneously at the mixing station (near-field; NF), as well as at 5-15 m distance into the workroom far-field (FF), and in the workers breathing zone. Particle concentrations (5nm to 30 µm) were measured using high time-resolution particle instruments and gravimetrically using PM1 cyclone filter samplers. The PM1 filters were also characterized by scanning electron microscopy (SEM). The NF particle and dust concentration levels were linked to pouring powder and were used to characterize the emissions and efficiencies of localized controls. NF particle number concentrations were 1000-40000cm(-3) above FF concentrations. NF particles were mainly between 100 and 500nm and emissions appeared to occur in short bursts. Personal PM1 exposure levels varied between 0.156 and 0.839mg m(-3) and were 1.6-15 times higher than stationary NF PM1 concentrations. SEM results verified that the personal exposure and NF particles were strongly dominated by the pigments and fillers used. Better understanding of the entire temporal personal exposure could be improved by using real-time particle monitors for personal exposure measurements. This study provides better insight into PM exposure characteristics and concentration levels in the paint industry.


Asunto(s)
Exposición por Inhalación/análisis , Exposición Profesional/análisis , Pintura , Tamaño de la Partícula , Material Particulado/análisis , Contaminantes Ocupacionales del Aire/análisis , Polvo/análisis , Monitoreo del Ambiente/instrumentación , Humanos , Industrias , Factores de Tiempo
11.
Part Fibre Toxicol ; 11: 4, 2014 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-24438343

RESUMEN

BACKGROUND: Certain multi-walled carbon nanotubes (MWCNTs) have been shown to elicit asbestos-like toxicological effects. To reduce needs for risk assessment it has been suggested that the physicochemical characteristics or reactivity of nanomaterials could be used to predict their hazard. Fibre-shape and ability to generate reactive oxygen species (ROS) are important indicators of high hazard materials. Asbestos is a known ROS generator, while MWCNTs may either produce or scavenge ROS. However, certain biomolecules, such as albumin - used as dispersants in nanomaterial preparation for toxicological testing in vivo and in vitro - may reduce the surface reactivity of nanomaterials. METHODS: Here, we investigated the effect of bovine serum albumin (BSA) and cell culture medium with and without BEAS 2B cells on radical formation/scavenging by five MWCNTs, Printex 90 carbon black, crocidolite asbestos, and glass wool, using electron spin resonance (ESR) spectroscopy and linked this to cytotoxic effects measured by trypan blue exclusion assay. In addition, the materials were characterized in the exposure medium (e.g. for hydrodynamic size-distribution and sedimentation rate). RESULTS: The test materials induced highly variable cytotoxic effects which could generally be related to the abundance and characteristics of agglomerates/aggregates and to the rate of sedimentation. All carbon nanomaterials were found to scavenge hydroxyl radicals (•OH) in at least one of the solutions tested. The effect of BSA was different among the materials. Two types of long, needle-like MWCNTs (average diameter >74 and 64.2 nm, average length 5.7 and 4.0 µm, respectively) induced, in addition to a scavenging effect, a dose-dependent formation of a unique, yet unidentified radical in both absence and presence of cells, which also coincided with cytotoxicity. CONCLUSIONS: Culture medium and BSA affects scavenging/production of •OH by MWCNTs, Printex 90 carbon black, asbestos and glass-wool. An unidentified radical is generated by two long, needle-like MWCNTs and these two CNTs were more cytotoxic than the other CNTs tested, suggesting that this radical could be related to the adverse effects of MWCNTs.


Asunto(s)
Células Epiteliales/metabolismo , Depuradores de Radicales Libres/metabolismo , Radicales Libres/metabolismo , Nanotubos de Carbono , Asbesto Crocidolita/farmacología , Bronquios/citología , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Supervivencia Celular/efectos de los fármacos , Sistema Libre de Células , Medios de Cultivo , Relación Dosis-Respuesta a Droga , Espectroscopía de Resonancia por Spin del Electrón , Células Epiteliales/efectos de los fármacos , Células Epiteliales/ultraestructura , Vidrio , Humanos , Luz , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Dispersión de Radiación , Albúmina Sérica Bovina/farmacología , Hollín/toxicidad
12.
Sci Total Environ ; 946: 174155, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942309

RESUMEN

In 2020, the European Commission published a regulation that states all producers of white paints containing titanium dioxide (TiO2) must provide a warning label on their products. Exposure during the production and application of products containing TiO2 can be harmful, and therefore these products must be labeled as "may cause cancer." The paint industry is a major user of TiO2 pigment. This study focuses on pigment release from three TiO2-based paints and discusses the effect of paint formulation, more precisely the Pigment Volume Concentration (PVC), to predict TiO2 pigment release from the paints during a simulated use phase and at the end of life (EoL). The use phase considered mild abrasion of painted panels that simulated cleaning or touching. The EoL phase was studied using leaching tests simulating landfill disposal. TiO2 release during both activities was evident with a high discrepancy between the three paints. While dry rubbing was similar for all paints, activities involving water present a high release link to paint matrix degradation. The paint pigment volume concentration and the paint permeability determines the TiO2 release during wet rubbing and leaching. This work represents an attempt to identify the paint permeability as a matrix-related parameter to predict TiO2 release and a way to use of this parameter to develop safer products.

13.
Environ Toxicol Pharmacol ; 107: 104413, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485102

RESUMEN

Carbon nanotubes (CNTs) vary in physicochemical properties which makes risk assessment challenging. Mice were pulmonary exposed to 26 well-characterized CNTs using the same experimental design and followed for one day, 28 days or 3 months. This resulted in a unique dataset, which was used to identify physicochemical predictors of pulmonary inflammation and systemic acute phase response. MWCNT diameter and SWCNT specific surface area were predictive of lower and higher neutrophil influx, respectively. Manganese and iron were shown to be predictive of higher neutrophil influx at day 1 post-exposure, whereas nickel content interestingly was predictive of lower neutrophil influx at all three time points and of lowered acute phase response at day 1 and 3 months post-exposure. It was not possible to separate effects of properties such as specific surface area and length in the multiple regression analyses due to co-variation.


Asunto(s)
Nanotubos de Carbono , Neumonía , Ratones , Animales , Nanotubos de Carbono/toxicidad , Nanotubos de Carbono/química , Reacción de Fase Aguda , Líquido del Lavado Bronquioalveolar/química , Pulmón , Neumonía/inducido químicamente , Ratones Endogámicos C57BL
14.
NanoImpact ; 35: 100513, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821170

RESUMEN

The past few decades of managing the uncertain risks associated with nanomaterials have provided valuable insights (knowledge gaps, tools, methods, etc.) that are equally important to promote safe and sustainable development and use of advanced materials. Based on these insights, the current paper proposes several actions to optimize the risk and sustainability governance of advanced materials. We emphasise the importance of establishing a European approach for risk and sustainability governance of advanced materials as soon as possible to keep up with the pace of innovation and to manage uncertainty among regulators, industry, SMEs and the public, regarding potential risks and impacts of advanced materials. Coordination of safe and sustainable advanced material research efforts, and data management according to the Findable, Accessible, Interoperable and Reusable (FAIR) principles will enhance the generation of regulatory-relevant knowledge. This knowledge is crucial to identify whether current regulatory standardised and harmonised test methods are adequate to assess advanced materials. At the same time, there is urgent need for responsible innovation beyond regulatory compliance which can be promoted through the Safe and Sustainable Innovation Approach. that combines the Safe and Sustainable by Design concept with Regulatory Preparedness, supported by a trusted environment. We further recommend consolidating all efforts and networks related to the risk and sustainability governance of advanced materials in a single, easy-to-use digital portal. Given the anticipated complexity and tremendous efforts required, we identified the need of establishing an organisational structure dedicated to aligning the fast technological developments in advanced materials with proper risk and sustainability governance. Involvement of multiple stakeholders in a trusted environment ensures a coordinated effort towards the safe and sustainable development, production, and use of advanced materials. The existing infrastructures and network of experts involved in the governance of nanomaterials would form a solid foundation for such an organisational structure.

15.
NanoImpact ; 30: 100461, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37040858

RESUMEN

There has been an increasing use of advanced materials, particularly manufactured nanomaterials, in industrial applications and consumer products in the last two decades. It has instigated concerns about the sustainability, in particular, risks and uncertainties regarding the interactions of the manufactured nanomaterials with humans and the environment. Consequently, significant resources in Europe and beyond have been invested into the development of tools and methods to support risk mitigation and risk management, and thus facilitate the research and innovation process of manufactured nanomaterials. The level of risk analysis is increasing, including assessment of socio-economic impacts, and sustainability aspects, moving from a conventional risk-based approach to a wider safety-and-sustainability-by-design perspective. Despite these efforts on tools and methods development, the level of awareness and use of most of such tools and methods by stakeholders is still limited. Issues of regulatory compliance and acceptance, reliability and trust, user-friendliness and compatibility with the users' needs are some of the factors which have been traditionally known to hinder their widespread use. Therefore, a framework is presented to quantify the readiness of different tools and methods towards their wider regulatory acceptance and downstream use by different stakeholders. The framework diagnoses barriers which hinder regulatory acceptance and wider usability of a tool/method based on their Transparency, Reliability, Accessibility, Applicability and Completeness (TRAAC framework). Each TRAAC pillar consists of criteria which help in evaluating the overall quality of the tools and methods for their (i) compatibility with regulatory frameworks and (ii) usefulness and usability for end-users, through a calculated TRAAC score based on the assessment. Fourteen tools and methods were assessed using the TRAAC framework as proof-of-concept and for user variability testing. The results provide insights into any gaps, opportunities, and challenges in the context of each of the 5 pillars of the TRAAC framework. The framework could be, in principle, adapted and extended to the evaluation of other type of tools & methods, even beyond the case of nanomaterials.


Asunto(s)
Nanoestructuras , Humanos , Reproducibilidad de los Resultados , Gestión de Riesgos , Medición de Riesgo/métodos , Europa (Continente)
16.
Nanomaterials (Basel) ; 13(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36985953

RESUMEN

Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are nanomaterials with one or multiple layers of carbon sheets. While it is suggested that various properties influence their toxicity, the specific mechanisms are not completely known. This study was aimed to determine if single or multi-walled structures and surface functionalization influence pulmonary toxicity and to identify the underlying mechanisms of toxicity. Female C57BL/6J BomTac mice were exposed to a single dose of 6, 18, or 54 µg/mouse of twelve SWCNTs or MWCNTs of different properties. Neutrophil influx and DNA damage were assessed on days 1 and 28 post-exposure. Genome microarrays and various bioinformatics and statistical methods were used to identify the biological processes, pathways and functions altered post-exposure to CNTs. All CNTs were ranked for their potency to induce transcriptional perturbation using benchmark dose modelling. All CNTs induced tissue inflammation. MWCNTs were more genotoxic than SWCNTs. Transcriptomics analysis showed similar responses across CNTs at the pathway level at the high dose, which included the perturbation of inflammatory, cellular stress, metabolism, and DNA damage responses. Of all CNTs, one pristine SWCNT was found to be the most potent and potentially fibrogenic, so it should be prioritized for further toxicity testing.

17.
Part Fibre Toxicol ; 9: 4, 2012 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-22300483

RESUMEN

BACKGROUND: Little is known of how the toxicity of nanoparticles is affected by the incorporation in complex matrices. We compared the toxic effects of the titanium dioxide nanoparticle UV-Titan L181 (NanoTiO2), pure or embedded in a paint matrix. We also compared the effects of the same paint with and without NanoTiO2. METHODS: Mice received a single intratracheal instillation of 18, 54 and 162 µg of NanoTiO2 or 54, 162 and 486 µg of the sanding dust from paint with and without NanoTiO2. DNA damage in broncheoalveolar lavage cells and liver, lung inflammation and liver histology were evaluated 1, 3 and 28 days after intratracheal instillation. Printex 90 was included as positive control. RESULTS: There was no additive effect of adding NanoTiO2 to paints: Therefore the toxicity of NanoTiO2 was reduced by inclusion into a paint matrix. NanoTiO2 induced inflammation in mice with severity similar to Printex 90. The inflammatory response of NanoTiO2 and Printex 90 correlated with the instilled surface area. None of the materials, except of Printex 90, induced DNA damage in lung lining fluid cells. The highest dose of NanoTiO2 caused DNA damage in hepatic tissue 1 day after intratracheal instillation. Exposure of mice to the dust from paints with and without TiO2 was not associated with hepatic histopathological changes. Exposure to NanoTiO2 or to Printex 90 caused slight histopathological changes in the liver in some of the mice at different time points. CONCLUSIONS: Pulmonary inflammation and DNA damage and hepatic histopathology were not changed in mice instilled with sanding dust from NanoTiO2 paint compared to paint without NanoTiO2. However, pure NanoTiO2 caused greater inflammation than NanoTiO2 embedded in the paint matrix.


Asunto(s)
Polvo , Pulmón/efectos de los fármacos , Nanopartículas/toxicidad , Pintura/toxicidad , Titanio/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/citología , Daño del ADN , Femenino , Fibrosis/patología , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Pulmón/patología , Pulmón/fisiología , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Neumonía/inducido químicamente , Neumonía/patología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
18.
Ecotoxicol Environ Saf ; 80: 216-23, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22475389

RESUMEN

Toxicity of nano-formulated silver to eukaryotes was assessed by exposing nematodes (Caenorhabditis elegans) to two types of silver nanoparticles (AgNPs): with average primary particle diameters of 1 nm (AgNP1) and 28nm (AgNP28, PVP coated), respectively. Tests were performed with and without presence of Escherichia coli to evaluate how the presence of a food bacterium affects the AgNP toxicity. A pre-exposure experiment was also conducted with nematodes pre-exposed to 0 and 1mgAgNPL(-1), respectively, for 20 h prior to exposure at higher concentrations of AgNP. Both AgNP1 and AgNP28 showed adverse dose-response effects and mortality on C. elegans. LC(50) for AgNP28 was lower than for AgNP1 and, hence, at the present test conditions the PVP-coated AgNP28 was more toxic than AgNP1. Including E. coli in the test medium as a food source increased AgNPs toxicity towards nematodes compared to when bacteria were not present. Pre-exposure to a low-level AgNP1 concentration made the nematodes slightly more sensitive to further exposure at higher concentrations compared to no pre-exposure, indicating that nematodes have no efficient physiological ability to counteract nano-silver toxicity by acclimation. The amount of dissolved Ag(+) was 0.18 to 0.21 mg L(-1) after 20 h at the highest AgNP1 (10 mg L(-1)) and AgNP28 (3 mg L(-1)) doses in the exposure medium, respectively. The upper limit of Ag(+) solubility cannot immediately explain the dose-response-related toxic effects of the AgNP nor the difference between AgNP1 and AgNP28. Higher toxicity of AgNP28 than AgNP1 may be explained by a combination of effects of coating, Ag-solubility and higher uptake rates due to agglomeration into µm-size agglomerates in the exposure medium.


Asunto(s)
Sustancias Peligrosas/toxicidad , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Relación Dosis-Respuesta a Droga , Escherichia coli/fisiología , Plata/metabolismo
19.
Nanomaterials (Basel) ; 12(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35159862

RESUMEN

In this study, we present a dissolution test system that allows for the testing of dissolution of nano- and micrometer size materials under highly controlled atmospheric composition (O2 and CO2), temperature, and pH. The system enables dissolution testing in physiological simulant fluids (here low-calcium Gamble's solution and phagolysosomal simulant fluid) and derivation of the temporal dissolution rates and reactivity of test materials. The system was validated considering the initial dissolution rates and dissolution profiles using eight different materials (γ-Al2O3, TiO2 (NM-104 coated with Al2O3 and glycerin), ZnO (NM-110 and NM-113, uncoated; and NM-111 coated with triethoxycaprylsilane), SiO2 (NM-200-synthetic amorphous silica), CeO2 (NM-212), and bentonite (NM-600) showing high intra-laboratory repeatability and robustness across repeated testing (I, II, and III) in triplicate (replicate 1, 2, and 3) in low-calcium Gamble's solution. A two-way repeated-measures ANOVA was used to determine the intra-laboratory repeatability in low-calcium Gamble's solution, where Al2O3 (p = 0.5277), ZnO (NM-110, p = 0.6578), ZnO (NM-111, p = 0.0627), and ZnO (NM-113, p = 0.4210) showed statistical identical repeatability across repeated testing (I, II, and III). The dissolution of the materials was also tested in phagolysosomal simulant fluid to demonstrate the applicability of the ATempH SBR system in other physiological fluids. We further show the uncertainty levels at which dissolution can be determined using the ATempH SBR system.

20.
Nanomaterials (Basel) ; 12(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35159911

RESUMEN

Dissolution plays an important role on pulmonary toxicity of nanomaterials (NMs). The influence of contextual parameters on the results from dissolution testing needs to be identified to improve the generation of relevant and comparable data. This study investigated how pre-dispersions made in water, low-calcium Gamble's solution, phagolysosomal simulant fluid (PSF), and 0.05% bovine serum albumin (BSA) affected the dissolution of the Al2O3 coating on poorly soluble TiO2 also coated with glycerine (NM-104) and rapidly dissolving uncoated (NM-110) and triethoxycaprylsilane-coated ZnO (NM-111) NMs. Dissolution tests were undertaken and controlled in a stirred batch reactor using low-calcium Gamble's solution and phagolysosomal simulant fluid a surrogate for the lung-lining and macrophage phagolysosomal fluid, respectively. Pre-dispersion in 0.05% BSA-water showed a significant delay or decrease in the dissolution of Al2O3 after testing in both low-calcium Gamble's solution and PSF. Furthermore, use of the 0.05% BSA pre-dispersion medium influenced the dissolution of ZnO (NM-110) in PSF and ZnO (NM-111) in low-calcium Gamble's solution and PSF. We hypothesize that BSA forms a protective coating on the particles, which delays or lowers the short-term dissolution of the materials used in this study. Consequently, the type of pre-dispersion medium can affect the results in short-term dissolution testing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA