Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(20): 9451-9460, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37842945

RESUMEN

Dry eye disease (DED) is a chronic condition characterized by ocular dryness and inflammation. The tear film lipid layer (TFLL) is the outermost layer composed of lipids and proteins that protect the ocular surface. However, environmental contaminants can disrupt its structure, potentially leading to DED. Although the importance of tear proteins in the TFLL functionality has been clinically recognized, the molecular mechanisms underlying TFLL-protein interactions remain unclear. In this study, we investigated tear protein-lipid interactions and analyzed their role in the TFLL functionality. The results show that lysozyme (LYZ) increases the stability of the TFLL by reducing its surface tension and increasing its surface pressure, resulting in increased TFLL evaporation and bacterial invasion resistance, with improved wettability and lubrication performance. These findings highlight the critical role of LYZ in maintaining ocular health and provide potential avenues for investigating novel approaches to DED treatment and patient well-being.


Asunto(s)
Síndromes de Ojo Seco , Lípidos , Humanos , Lípidos/química , Muramidasa , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Fenómenos Físicos , Lágrimas/química , Lágrimas/metabolismo
2.
Biomacromolecules ; 24(8): 3898-3907, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37435976

RESUMEN

Liposomes have been extensively adopted in drug delivery systems with clinically approved formulations. However, hurdles remain in terms of loading multiple components and precisely controlling their release. Herein, we report a vesosomal carrier composed of liposomes encapsulated inside the core of another liposome for the controlled and sustained release of multiple contents. The inner liposomes are made of lipids with different compositions and are co-encapsulated with a photosensitizer. Upon induction of reactive oxygen species (ROS), the contents of the liposomes are released, with each type of liposome displaying distinct kinetics due to the variance in lipid peroxidation for differential structural deformation. In vitro experiments demonstrated immediate content release from ROS-vulnerable liposomes, followed by sustained release from ROS-nonvulnerable liposomes. Moreover, the release trigger was validated at the organismal level using Caenorhabditis elegans. This study demonstrates a promising platform for more precisely controlling the release of multiple components.


Asunto(s)
Portadores de Fármacos , Liposomas , Liposomas/química , Preparaciones de Acción Retardada/farmacología , Especies Reactivas de Oxígeno , Sistemas de Liberación de Medicamentos
3.
Mikrochim Acta ; 188(11): 364, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34613450

RESUMEN

To enhance the sensitivity of lateral flow assays (LFAs), a simple strategy is proposed using a nitrocellulose membrane modified with a superabsorbent polymer (SAP). SAP was incorporated into a nitrocellulose membrane for the flow control of detection probes. When absorbing aqueous solutions, SAP promoted the formation of biomolecule complexes to achieve up to a tenfold sensitivity improvement for the detection of human IgG. The assay time was optimized experimentally and numerically to within 20 min using this strategy. Moreover, fluid saturation in LFAs modified with SAP was mathematically simulated to better understand the underlying process, and molecular dynamics simulations were carried out to determine the effect of SAP. The proposed design was also applied to samples spiked with human immunoglobulin-depleted serum to test its applicability. The strategy presented is unique in that it preserves the characteristics of conventional LFAs, as it minimizes user intervention and is simple to manufacture at scale.

4.
Sensors (Basel) ; 20(11)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492781

RESUMEN

A colorimetric polydiacetylene (PDA) paper strip sensor that can specifically recognize Bacillus thuringiensis (BT) HD-73 spores is described in this work. The target-specific aptamer was combined with PDA, and the aptamer-conjugated PDA vesicles were then coated on polyvinylidene fluoride (PVDF) paper strips by a simple solvent evaporation method. The PDA-aptamer paper strips can be used to detect the target without any pre-treatment. Using the paper strip, the presence of BT spores is directly observable by the naked eye based on the unique blue-to-red color transition of the PDA. Quantitative studies using the paper strip were also carried out by analyzing the color transitions of the PDA. The specificity of this PDA sensor was verified with a high concentration of Escherichia coli, and no discernable change was observed. The observable color change in the paper strip occurs in less than 1 h, and the limit of detection is 3 × 107 CFU/mL, much below the level harmful to humans. The PDA-based paper sensor, developed in this work, does not require a separate power or detection device, making the sensor strip highly transportable and suitable for spore analysis anytime and anywhere. Moreover, this paper sensor platform is easily fabricated, can be adapted to other targets, is highly portable, and is highly specific for the detection of BT spores.


Asunto(s)
Bacillus thuringiensis/aislamiento & purificación , Técnicas Biosensibles , Colorimetría , Esporas Bacterianas/aislamiento & purificación , Polímero Poliacetilénico
5.
Electrophoresis ; 40(3): 431-436, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30039534

RESUMEN

C. elegans is a popular model organism with a well-developed neural network. Approximately 60% of the genes in C. elegans have genomic counterparts in humans, including those involved in building neural circuits. Therefore, we can extend the study of human neural network mechanisms to C. elegans which is easy to genetically manipulate. C. elegans shows behavioural responses to various external physical and chemical stimuli. Electrotaxis is one of its distinct behavioural responses, which is defined as movement towards the cathode in an electric field. In this study, we developed an effective microfluidic trap system for analysing electrotaxis in C. elegans. In addition, two mutant strains (unc-54(s74) and unc-6(e78)) from wild-type (N2) worms were screened using the system. Wild-type (N2) worms and the two mutant strains clearly showed different behavioural responses to the applied electric field, thus enabling the effective screening of the mutant worms from the wild type (N2). This microfluidic system can be utilized as a platform for the study of behavioural responses, and for the sorting and mutant screening of C. elegans.


Asunto(s)
Caenorhabditis elegans , Técnicas Analíticas Microfluídicas , Taxia , Animales , Caenorhabditis elegans/fisiología , Caenorhabditis elegans/efectos de la radiación , Electricidad , Electrofisiología , Diseño de Equipo , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Mutación/fisiología , Taxia/fisiología , Taxia/efectos de la radiación
6.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901910

RESUMEN

In biological cells, membrane proteins are the most crucial component for the maintenance of cell physiology and processes, including ion transportation, cell signaling, cell adhesion, and recognition of signal molecules. Therefore, researchers have proposed a number of membrane platforms to mimic the biological cell environment for transmembrane protein incorporation. The performance and selectivity of these transmembrane proteins based biomimetic platforms are far superior to those of traditional material platforms, but their lack of stability and scalability rule out their commercial presence. This review highlights the development of transmembrane protein-based biomimetic platforms for four major applications, which are biosensors, molecular interaction studies, energy harvesting, and water purification. We summarize the fundamental principles and recent progress in transmembrane protein biomimetic platforms for each application, discuss their limitations, and present future outlooks for industrial implementation.


Asunto(s)
Materiales Biomiméticos , Biomimética , Membrana Celular/química , Proteínas de la Membrana/química , Membranas Artificiales , Animales , Técnicas Biosensibles , Membrana Celular/metabolismo , Descubrimiento de Drogas/métodos , Humanos , Proteínas de la Membrana/metabolismo , Conformación Molecular , Nanotecnología
7.
Anal Chem ; 87(4): 2072-8, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25615891

RESUMEN

We developed a simple and sensitive colorimetric biosensor in the form of microparticles by using polydiacetylene (PDA) vesicles encapsulated within a hydrogel matrix for the detection of phosphinothricin acetyltransferase (PAT) protein, which is one of the most important marker proteins in genetically modified (GM) crops. Although PDA is commonly used as a sensing material due to its unique colorimetric properties, existing PDA biosensors are ineffective due to their low sensitivity as well as their lack of robustness. To overcome these disadvantages, we devised immunohydrogel beads made of anti-PAT-conjugated PDA vesicles embedded at high density within a poly(ethylene glycol) diacrylate (PEG-DA) hydrogel matrix. In addition, the construction of immunohydrogel beads was automated by use of a microfluidic device. In the immunoreaction, the sensitivity of antibody-conjugated PDA vesicles was significantly amplified, as monitored by the unaided eye. The limit of detection for target molecules reached as low as 20 nM, which is sufficiently low enough to detect target materials in GM organisms. Collectively, the results show that immunohydrogel beads constitute a promising colorimetric sensing platform for onsite testing in a number of fields, such as the food and medical industries, as well as warfare situations.


Asunto(s)
Acetiltransferasas/análisis , Anticuerpos Inmovilizados/química , Productos Agrícolas/enzimología , Hidrogeles/química , Técnicas Analíticas Microfluídicas/instrumentación , Polímeros/química , Poliinos/química , Técnicas Biosensibles/instrumentación , Colorimetría/instrumentación , Diseño de Equipo , Alimentos Modificados Genéticamente , Inmunoensayo/instrumentación , Límite de Detección , Polímero Poliacetilénico
8.
Phys Chem Chem Phys ; 17(8): 5725-33, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25623225

RESUMEN

Imidazolium-based ionic surfactants with hydrocarbon tails of different sizes were simulated with lipid bilayers at different salt concentrations. Starting with the random position of ionic surfactants outside the bilayer, surfactants with long tails mostly insert into the bilayer, while those with short tails show the insertion of fewer surfactant molecules, indicating the effect of the tail length. In particular, surfactants with a tail of two or four hydrocarbons insert and reversibly detach from the bilayer, while the inserted longer surfactants cannot be reversibly detached because of the strong hydrophobic interaction with lipid tails, in quantitative agreement with experiments. Longer surfactants insert more deeply and irreversibly into the bilayer and thus increase lateral diffusivities of the bilayer, indicating that longer surfactants more significantly disorder lipid bilayers, which also agrees with experiments regarding the effect of the tail length of ionic surfactants on membrane permeability and toxicity. Addition of NaCl ions weakens the electrostatic interactions between headgroups of surfactants and lipids, leading to the binding of fewer surfactants into the bilayer. In particular, our simulation findings indicate that insertion of ionic surfactants can be initiated by either the hydrophobic interaction between tails of surfactants and lipids or the electrostatic binding between imidazolium heads and lipid heads, and the strength of hydrophobic and electrostatic interactions depends on the tail length of surfactants.


Asunto(s)
Imidazoles/química , Membrana Dobles de Lípidos/química , Tensoactivos/química , Interacciones Hidrofóbicas e Hidrofílicas , Iones/química , Micelas , Cloruro de Sodio/química , Electricidad Estática
9.
Anal Chem ; 86(18): 8910-5, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25123602

RESUMEN

A black lipid membrane (BLM) is a powerful platform for studying the electrophysiology of cell membranes as well as transmembrane proteins. However, BLMs have disadvantages in terms of stability, accessibility, and transportability, which preclude their industrial applications. To resolve these issues, frozen membrane precursor (MP) was devised to improve the transportability and storability of BLMs. As described previously, MP is a storable and transportable platform that can be delivered to the point-of-use, where BLMs are automatically formed upon thawing at room temperature. However, MP has an inconsistent thinning-out time, ranging from 30 min to 24 h, as well as a low success rate of BLM formation (~27%), which make it undesirable for practical use. In our study, polydimethylsiloxane (PDMS) was introduced as a replacement for conventionally used Teflon film to control thinning-out time. As such, we used a PDMS thin-film, a porous-structured hydrophobic polymer, and squalene, a high viscosity solvent, to facilitate membrane formation, whereas the absorption rates of solvents were controlled to achieve consistent BLM formation time. We successfully reduced thinning-out time down to <1 h as well as enhanced the success rate of BLM formation to greater than 80%. Moreover, we demonstrated the feasibility of our platform for use in drug screening using gramicidin A and guanidine.


Asunto(s)
Dimetilpolisiloxanos/química , Canales Iónicos/metabolismo , Lípidos de la Membrana/química , Automatización , Técnicas Biosensibles , Fenómenos Electrofisiológicos , Gramicidina/química , Gramicidina/metabolismo , Guanidina/química , Guanidina/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Canales Iónicos/química , Lípidos de la Membrana/metabolismo , Porosidad , Escualeno/química , Viscosidad
10.
Anal Bioanal Chem ; 406(11): 2679-86, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24553663

RESUMEN

In this study, we propose a novel micro-/nanofluidic device that can generate a chemical concentration gradient using a parallel nanochannel as gradient generator. This device is easy to fabricate, showing high reproducibility. Its main feature is the multiple-nanochannel-based gradient generator, which permits the diffusion of small molecules and tunably generates concentration gradients. The nanopattern for the nanochannels can be rapidly and easily fabricated by wrinkling a diamond-like carbon thin film which is deposited on a polydimethylsiloxane substrate; the generation of the concentration gradient can be adjusted by controlling the dimensions of the nanochannels. The developed gradient generator is embedded into a microfluidic device to study chemotaxis in the nematode Caenorhabditis elegans, which has a highly developed chemosensory system and can detect a wide variety of chemical molecules. This device shows good performance for rapid analysis of C. elegans chemotaxis under sodium chloride stimuli.


Asunto(s)
Caenorhabditis elegans/química , Caenorhabditis elegans/fisiología , Quimiotaxis , Técnicas Analíticas Microfluídicas/métodos , Animales , Técnicas Analíticas Microfluídicas/instrumentación
11.
Micromachines (Basel) ; 15(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675322

RESUMEN

In this study, we created a 3D Artificial Skin Platform that can be used for the treatment of pigmentation by artificially realizing the skin of pregnant women. For the stable realization of 3D artificial skin, a bilayer hydrogel composed of collagen type I and fibrin was designed and applied to the study to reduce the tension-induced contraction of collagen type I, the extracellular matrix (ECM) of artificial skin, by dynamic culture. Oxygen concentration and 17ß-Estradiol (E2) concentration, which are highly related to melanin production, were selected as parameters of the pregnancy environment and applied to cell culture. Oxygen concentration, which is locally reduced in the first trimester (2.5-3%), and E2, which is upregulated in the third trimester, were applied to the cell culture process. We analyzed whether the 3D artificial skin implemented in the 3D Artificial Skin Platform could better represent the tendency of melanin expression in pregnant women than cells cultured under the same conditions in 2D. The expression levels of melanin and melanin-related genes in the 2D cell culture did not show a significant trend that was similar to the melanin expression trend in pregnant women. However, the 3D artificial skin platform showed a significant trend towards a 2-6-fold increase in melanin expression in response to low oxygen concentrations (2.5%) and E2 concentrations (17 ng/mL), which was similar to the trend in pregnant women in vivo. These results suggest that 3D artificial skin cultured on the Artificial Skin Platform has the potential to be used as a substitute for human pregnant skin in various research fields related to the treatment of pigmentation.

12.
Biomimetics (Basel) ; 9(5)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38786499

RESUMEN

Placental trophoblast invasion is critical for establishing the maternal-fetal interface, yet the mechanisms driving trophoblast-induced maternal arterial remodeling remain elusive. To address this gap, we developed a three-dimensional microfluidic placenta-on-chip model that mimics early pregnancy placentation in a hypoxic environment. By studying human umbilical vein endothelial cells (HUVECs) under oxygen-deprived conditions upon trophoblast invasion, we observed significant HUVEC artery remodeling, suggesting the critical role of hypoxia in placentation. In particular, we found that trophoblasts secrete matrix metalloproteinase (MMP) proteins under hypoxic conditions, which contribute to arterial remodeling by the degradation of extracellular matrix components. This MMP-mediated remodeling is critical for facilitating trophoblast invasion and proper establishment of the maternal-fetal interface. In addition, our platform allows real-time monitoring of HUVEC vessel contraction during trophoblast interaction, providing valuable insights into the dynamic interplay between trophoblasts and maternal vasculature. Collectively, our findings highlight the importance of MMP-mediated arterial remodeling in placental development and underscore the potential of our platform to study pregnancy-related complications and evaluate therapeutic interventions.

13.
Biosensors (Basel) ; 14(1)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38275308

RESUMEN

The development of therapeutic interventions for diseases necessitates a crucial step known as drug screening, wherein potential substances with medicinal properties are rigorously evaluated. This process has undergone a transformative evolution, driven by the imperative need for more efficient, rapid, and high-throughput screening platforms. Among these, microfluidic systems have emerged as the epitome of efficiency, enabling the screening of drug candidates with unprecedented speed and minimal sample consumption. This review paper explores the cutting-edge landscape of microfluidic-based drug screening platforms, with a specific emphasis on two pioneering approaches: organ-on-a-chip and C. elegans-based chips. Organ-on-a-chip technology harnesses human-derived cells to recreate the physiological functions of human organs, offering an invaluable tool for assessing drug efficacy and toxicity. In parallel, C. elegans-based chips, boasting up to 60% genetic homology with humans and a remarkable affinity for microfluidic systems, have proven to be robust models for drug screening. Our comprehensive review endeavors to provide readers with a profound understanding of the fundamental principles, advantages, and challenges associated with these innovative drug screening platforms. We delve into the latest breakthroughs and practical applications in this burgeoning field, illuminating the pivotal role these platforms play in expediting drug discovery and development. Furthermore, we engage in a forward-looking discussion to delineate the future directions and untapped potential inherent in these transformative technologies. Through this review, we aim to contribute to the collective knowledge base in the realm of drug screening, providing valuable insights to researchers, clinicians, and stakeholders alike. We invite readers to embark on a journey into the realm of microfluidic-based drug screening platforms, fostering a deeper appreciation for their significance and promising avenues yet to be explored.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Microfluídica , Animales , Humanos , Caenorhabditis elegans , Evaluación Preclínica de Medicamentos , Sistemas Microfisiológicos , Dispositivos Laboratorio en un Chip
14.
Cells Tissues Organs ; 198(5): 349-56, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24662367

RESUMEN

We present the physical and biochemical effects of extracellular matrixes (ECMs) on HL-1 cardiomyocytes. ECMs play major roles in cell growth, adhesion and the maintenance of native cell functions. We investigated the effects of 6 different cell culture systems: 5 different ECM-treated surfaces (fibronectin, laminin, collagen I, gelatin and a gelatin/fibronectin mixture) and 1 nontreated surface. Surface morphology was scanned and analyzed using atomic force microscopy in order to investigate the physical effects of ECMs. The attachment, growth, viability, proliferation and phenotype of the cells were analyzed using phase-contrast microscopy and immunocytochemistry to elucidate the biochemical effects of ECMs. Our study provides basic information for understanding cell-ECM interactions and should be utilized in future cardiac cell research and tissue engineering.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Animales , Técnicas de Cultivo de Célula , Procesos de Crecimiento Celular/fisiología , Colágeno/metabolismo , Fibronectinas/metabolismo , Ratones
15.
ACS Sens ; 8(10): 3754-3761, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37801584

RESUMEN

Sepsis is a life-threatening condition with systemic inflammatory responses caused by bacterial infections. Considering the emergence of antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), sepsis is a great threat to public health. The gold standard methods for antimicrobial susceptibility testing (AST), however, take at least approximately 3 days to implement the entire blood culture, pure culture, and AST processes. To overcome the time-consuming nature of conventional AST, a method employing a chromatic biosensor composed of poly(diacetylene), alginate, and LB broth (PAL) is introduced in this study. Compared to the gold standards, AST with PAL biosensors can be completed within a time frame as short as 16 h. Such a significant reduction in time is possible because the consecutive cultures and AST are carried out simultaneously by encapsulating the bacterial nutrients and detection molecules into a single component. The bead-like hydrogel sensors were used in their freeze-dried form, which endows them with portability and stability, thus making them adequate for point-of-care testing. The PAL biosensor yields minimum inhibitory concentrations comparable to those from the Clinical and Laboratory Standards Institute, and the applicability of the biosensor is further shown in MRSA-infected mice.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Sepsis , Animales , Ratones , Sistemas de Atención de Punto , Colorimetría , Hidrogeles , Antibacterianos/farmacología , Bacterias , Pruebas en el Punto de Atención
16.
Bioprocess Biosyst Eng ; 35(1-2): 241-6, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21909672

RESUMEN

An artificially created lipid bilayer is an important platform in studying ion channels and engineered biosensor applications. However, a lipid bilayer created using conventional techniques is fragile and short-lived, and the measurement of ion channels requires expertise and laborious procedures, precluding practical applications. Here, we demonstrate a storable droplet lipid bilayer precursor frozen with ion channels, resulting in a droplet interface bilayer upon thawing. A small vial with an aqueous droplet in organic solution was flash frozen in -80 °C methanol immediately after an aqueous droplet was introduced into the organic solution and gravity draws the droplet down to the interface upon thawing. A lipid bilayer created along the interface using this method had giga-ohm resistance and typical specific capacitance values. The noise level of this system is favorably comparable to the conventional system. The subsequent incorporation of ion channels, alpha-hemolysin and gramicidin A, showed typical conductance values consistent with those in previous literatures. This novel system to create a lipid bilayer as a whole can be automated from its manufacture to use and indefinitely stored when frozen. As a result, ion channel measurements can be carried out in any place, increasing the accessibility of ion channel studies as well as a number of applications, such as biosensors, ion channel drug screening, and biophysical studies.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos/química , Membrana Dobles de Lípidos/química , Almacenaje de Medicamentos , Impedancia Eléctrica
17.
Sensors (Basel) ; 12(7): 9530-50, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23012557

RESUMEN

Synthetic biomimetic membranes provide biological environments to membrane proteins. By exploiting the central roles of biological membranes, it is possible to devise biosensors, drug delivery systems, and nanocontainers using a biomimetic membrane system integrated with functional proteins. Biomimetic membranes can be created with synthetic lipids or block copolymers. These amphiphilic lipids and polymers self-assemble in an aqueous solution either into planar membranes or into vesicles. Using various techniques developed to date, both planar membranes and vesicles can provide versatile and robust platforms for a number of applications. In particular, biomimetic membranes with modified lipids or functional proteins are promising platforms for biosensors. We review recent technologies used to create synthetic biomimetic membranes and their engineered sensors applications.

18.
Micromachines (Basel) ; 13(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36557515

RESUMEN

In the placenta, substances such as nutrients, oxygen, and by-products are exchanged between the mother and the fetus, and the proper formation of the placenta determines the success of pregnancy, including the growth of the fetus. Preeclampsia is an obstetric disease in which the incomplete formation of the placenta occurs, which is known to occur when there is an abnormality in the invasion of trophoblast cells. The invasion of trophoblast cells is controlled by oxygen concentration, and HIF-1α changes according to oxygen concentration, showing a difference in cell mobility. MMP-2 and MMP-9 are observed to be high in the endometrium involved in trophoblast invasion, and the expression is regulated according to the oxygen concentration. In this experiment, cell culture was conducted using a gel-patterned system with a hypoxic chamber. Before the chip experiment, the difference in the expression of MMP-2 and MMP-9 according to the oxygen concentration was confirmed using a hypoxia chamber. After that, trophoblast cells (HTR8/SVneo) and endothelial cells (HUVECs) were separated and cultured through a physical barrier through a hydrogel on a microfluidic chip. Cells were cultured in a hypoxic chamber under controlled oxygen levels. It was confirmed that the mobility of trophoblast cells in culture on the chip was upregulated in a hypoxic environment through oxygen control. This suggests that the formation of a hypoxic environment in the endometrium where the invasion of trophoblast cells occurs plays a role in increasing cell mobility.

19.
Membranes (Basel) ; 12(3)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35323761

RESUMEN

Photosensitizers (PSs) used in photodynamic therapy (PDT) have been developed to selectively destroy tumor cells. However, PSs recurrently reside on the extracellular matrix or affect normal cells in the vicinity, causing side effects. Additionally, the membrane stability of tumor cells and normal cells in the presence of reactive oxygen species (ROS) has not been studied, and the effects of ROS at the membrane level are unclear. In this work, we elucidate the stabilities of model membranes mimicking tumor cells and normal cells in the presence of ROS. The model membranes are constructed according to the degree of saturation in lipids and the bilayers are prepared either in symmetric or asymmetric form. Interestingly, membranes mimicking normal cells are the most vulnerable to ROS, while membranes mimicking tumor cells remain relatively stable. The instability of normal cell membranes may be one cause of the side effects of PDT. Moreover, we also show that ROS levels are controlled by antioxidants, helping to maintain an appropriate amount of ROS when PDT is applied.

20.
J Food Drug Anal ; 30(4): 590-602, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36753367

RESUMEN

This study developed a simple and rapid strategic technique to detect ractopamine (chemical growth-promoting agent) in pork. Two highly sensitive and specific gold nanoparticle-based portable sensors, i.e., localized surface plasmon resonance (LSPR) sensors, and lateral flow immunoassay (LFIA) strips were developed to detect veterinary drug residues in food products, that have detrimental effects on humans. Optimization studies were conducted on several sensor devices to improve sensitivity. Each sensor comprised functionalized gold nanoparticles conjugated with ractopamine antibodies. The LSPR sensor chip achieved excellent detection sensitivity = 1.19 fg/mL and was advantageous for quantitative analysis due to its wide dynamic range. On the other hand, LFIA strips provided visual test confirmation and achieved 2.27 ng/mL detection sensitivity, significantly less sensitive than LSPR. The complementary sensors help overcome each other's shortcomings with both the techniques offering ease of use, affordability and rapid diagnosis. Thus, these sensors can be applied on-site for routine screening of harmful drug residues in pork meat. They also provide useful direction for advanced technologies to enhance assay performance for detecting various other food drug contaminants.


Asunto(s)
Nanopartículas del Metal , Carne de Cerdo , Carne Roja , Humanos , Animales , Porcinos , Resonancia por Plasmón de Superficie/métodos , Oro/química , Nanopartículas del Metal/química , Inmunoensayo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA