Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell ; 185(8): 1402-1413.e21, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35366416

RESUMEN

The Avars settled the Carpathian Basin in 567/68 CE, establishing an empire lasting over 200 years. Who they were and where they came from is highly debated. Contemporaries have disagreed about whether they were, as they claimed, the direct successors of the Mongolian Steppe Rouran empire that was destroyed by the Turks in ∼550 CE. Here, we analyze new genome-wide data from 66 pre-Avar and Avar-period Carpathian Basin individuals, including the 8 richest Avar-period burials and further elite sites from Avar's empire core region. Our results provide support for a rapid long-distance trans-Eurasian migration of Avar-period elites. These individuals carried Northeast Asian ancestry matching the profile of preceding Mongolian Steppe populations, particularly a genome available from the Rouran period. Some of the later elite individuals carried an additional non-local ancestry component broadly matching the steppe, which could point to a later migration or reflect greater genetic diversity within the initial migrant population.


Asunto(s)
Pueblo Asiatico , ADN Antiguo , Genética de Población , Pueblo Asiatico/genética , Genoma , Historia Antigua , Migración Humana/historia , Humanos , Azufre
2.
Cell ; 181(6): 1232-1245.e20, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32437661

RESUMEN

Modern humans have inhabited the Lake Baikal region since the Upper Paleolithic, though the precise history of its peoples over this long time span is still largely unknown. Here, we report genome-wide data from 19 Upper Paleolithic to Early Bronze Age individuals from this Siberian region. An Upper Paleolithic genome shows a direct link with the First Americans by sharing the admixed ancestry that gave rise to all non-Arctic Native Americans. We also demonstrate the formation of Early Neolithic and Bronze Age Baikal populations as the result of prolonged admixture throughout the eighth to sixth millennium BP. Moreover, we detect genetic interactions with western Eurasian steppe populations and reconstruct Yersinia pestis genomes from two Early Bronze Age individuals without western Eurasian ancestry. Overall, our study demonstrates the most deeply divergent connection between Upper Paleolithic Siberians and the First Americans and reveals human and pathogen mobility across Eurasia during the Bronze Age.


Asunto(s)
Genoma Humano/genética , Migración Humana/historia , Grupos Raciales/genética , Grupos Raciales/historia , Asia , ADN Antiguo , Europa (Continente) , Historia Antigua , Humanos , Siberia
3.
Cell ; 183(4): 890-904.e29, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33157037

RESUMEN

The Eastern Eurasian Steppe was home to historic empires of nomadic pastoralists, including the Xiongnu and the Mongols. However, little is known about the region's population history. Here, we reveal its dynamic genetic history by analyzing new genome-wide data for 214 ancient individuals spanning 6,000 years. We identify a pastoralist expansion into Mongolia ca. 3000 BCE, and by the Late Bronze Age, Mongolian populations were biogeographically structured into three distinct groups, all practicing dairy pastoralism regardless of ancestry. The Xiongnu emerged from the mixing of these populations and those from surrounding regions. By comparison, the Mongols exhibit much higher eastern Eurasian ancestry, resembling present-day Mongolic-speaking populations. Our results illuminate the complex interplay between genetic, sociopolitical, and cultural changes on the Eastern Steppe.


Asunto(s)
Genética de Población , Pradera , Arqueología , Europa (Continente) , Femenino , Frecuencia de los Genes/genética , Pool de Genes , Heterogeneidad Genética , Genoma Humano , Geografía , Haplotipos/genética , Historia Antigua , Humanos , Masculino , Mongolia , Análisis de Componente Principal , Factores de Tiempo
4.
Cell ; 181(5): 1158-1175.e28, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32470401

RESUMEN

Here, we report genome-wide data analyses from 110 ancient Near Eastern individuals spanning the Late Neolithic to Late Bronze Age, a period characterized by intense interregional interactions for the Near East. We find that 6th millennium BCE populations of North/Central Anatolia and the Southern Caucasus shared mixed ancestry on a genetic cline that formed during the Neolithic between Western Anatolia and regions in today's Southern Caucasus/Zagros. During the Late Chalcolithic and/or the Early Bronze Age, more than half of the Northern Levantine gene pool was replaced, while in the rest of Anatolia and the Southern Caucasus, we document genetic continuity with only transient gene flow. Additionally, we reveal a genetically distinct individual within the Late Bronze Age Northern Levant. Overall, our study uncovers multiple scales of population dynamics through time, from extensive admixture during the Neolithic period to long-distance mobility within the globalized societies of the Late Bronze Age. VIDEO ABSTRACT.


Asunto(s)
ADN Antiguo/análisis , Etnicidad/genética , Flujo Génico/genética , Arqueología/métodos , ADN Mitocondrial/genética , Etnicidad/historia , Flujo Génico/fisiología , Variación Genética/genética , Genética de Población/métodos , Genoma Humano/genética , Genómica/métodos , Haplotipos , Historia Antigua , Migración Humana/historia , Humanos , Región Mediterránea , Medio Oriente , Análisis de Secuencia de ADN
5.
Nature ; 596(7873): 543-547, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34433944

RESUMEN

Much remains unknown about the population history of early modern humans in southeast Asia, where the archaeological record is sparse and the tropical climate is inimical to the preservation of ancient human DNA1. So far, only two low-coverage pre-Neolithic human genomes have been sequenced from this region. Both are from mainland Hòabìnhian hunter-gatherer sites: Pha Faen in Laos, dated to 7939-7751 calibrated years before present (yr cal BP; present taken as AD 1950), and Gua Cha in Malaysia (4.4-4.2 kyr cal BP)1. Here we report, to our knowledge, the first ancient human genome from Wallacea, the oceanic island zone between the Sunda Shelf (comprising mainland southeast Asia and the continental islands of western Indonesia) and Pleistocene Sahul (Australia-New Guinea). We extracted DNA from the petrous bone of a young female hunter-gatherer buried 7.3-7.2 kyr cal BP at the limestone cave of Leang Panninge2 in South Sulawesi, Indonesia. Genetic analyses show that this pre-Neolithic forager, who is associated with the 'Toalean' technocomplex3,4, shares most genetic drift and morphological similarities with present-day Papuan and Indigenous Australian groups, yet represents a previously unknown divergent human lineage that branched off around the time of the split between these populations approximately 37,000 years ago5. We also describe Denisovan and deep Asian-related ancestries in the Leang Panninge genome, and infer their large-scale displacement from the region today.


Asunto(s)
ADN Antiguo/análisis , Fósiles , Genoma Humano/genética , Genómica , Islas/etnología , Filogenia , Asia Sudoriental , Australia , Huesos/metabolismo , Cuevas , Femenino , Historia Antigua , Migración Humana/historia , Humanos , Indonesia/etnología , Nueva Guinea
6.
Nature ; 599(7884): 256-261, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707286

RESUMEN

The identity of the earliest inhabitants of Xinjiang, in the heart of Inner Asia, and the languages that they spoke have long been debated and remain contentious1. Here we present genomic data from 5 individuals dating to around 3000-2800 BC from the Dzungarian Basin and 13 individuals dating to around 2100-1700 BC from the Tarim Basin, representing the earliest yet discovered human remains from North and South Xinjiang, respectively. We find that the Early Bronze Age Dzungarian individuals exhibit a predominantly Afanasievo ancestry with an additional local contribution, and the Early-Middle Bronze Age Tarim individuals contain only a local ancestry. The Tarim individuals from the site of Xiaohe further exhibit strong evidence of milk proteins in their dental calculus, indicating a reliance on dairy pastoralism at the site since its founding. Our results do not support previous hypotheses for the origin of the Tarim mummies, who were argued to be Proto-Tocharian-speaking pastoralists descended from the Afanasievo1,2 or to have originated among the Bactria-Margiana Archaeological Complex3 or Inner Asian Mountain Corridor cultures4. Instead, although Tocharian may have been plausibly introduced to the Dzungarian Basin by Afanasievo migrants during the Early Bronze Age, we find that the earliest Tarim Basin cultures appear to have arisen from a genetically isolated local population that adopted neighbouring pastoralist and agriculturalist practices, which allowed them to settle and thrive along the shifting riverine oases of the Taklamakan Desert.


Asunto(s)
Arqueología , Genoma Humano/genética , Genómica , Migración Humana/historia , Momias/historia , Filogenia , Agricultura/historia , Animales , Bovinos , China , Características Culturales , Cálculos Dentales/química , Clima Desértico , Dieta/historia , Europa (Continente) , Femenino , Cabras , Pradera , Historia Antigua , Humanos , Masculino , Proteínas de la Leche/análisis , Filogeografía , Análisis de Componente Principal , Proteoma/análisis , Proteómica , Ovinos , Secuenciación Completa del Genoma
7.
Nature ; 570(7760): 236-240, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31168094

RESUMEN

Much of the American Arctic was first settled 5,000 years ago, by groups of people known as Palaeo-Eskimos. They were subsequently joined and largely displaced around 1,000 years ago by ancestors of the present-day Inuit and Yup'ik1-3. The genetic relationship between Palaeo-Eskimos and Native American, Inuit, Yup'ik and Aleut populations remains uncertain4-6. Here we present genomic data for 48 ancient individuals from Chukotka, East Siberia, the Aleutian Islands, Alaska, and the Canadian Arctic. We co-analyse these data with data from present-day Alaskan Iñupiat and West Siberian populations and published genomes. Using methods based on rare-allele and haplotype sharing, as well as established techniques4,7-9, we show that Palaeo-Eskimo-related ancestry is ubiquitous among people who speak Na-Dene and Eskimo-Aleut languages. We develop a comprehensive model for the Holocene peopling events of Chukotka and North America, and show that Na-Dene-speaking peoples, people of the Aleutian Islands, and Yup'ik and Inuit across the Arctic region all share ancestry from a single Palaeo-Eskimo-related Siberian source.


Asunto(s)
Migración Humana/historia , Inuk/clasificación , Inuk/genética , Filogenia , Filogeografía , África , Alaska , Alelos , Regiones Árticas , Asia Sudoriental , Canadá , Europa (Continente) , Genoma Humano/genética , Haplotipos , Historia Antigua , Humanos , Análisis de Componente Principal , Siberia/etnología
8.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995300

RESUMEN

Present-day African cattle retain a unique genetic profile composed of a mixture of the Bos taurus and Bos indicus populations introduced into the continent at different time periods. However, details of the admixture history and the exact origins of the source populations remain obscure. Here, we infer the source of admixture in the earliest domestic cattle in Africa, African taurine. We detect a significant contribution (up to ∼20%) from a basal taurine lineage, which might represent the now-extinct African aurochs. In addition, we show that the indicine ancestry of African cattle, although most closely related to so-far sampled North Indian indicine breeds, has a small amount of additional genetic affinity to Southeast Asian indicine breeds. Our findings support the hypothesis of aurochs introgression into African taurine and generate a novel hypothesis that the origin of indicine ancestry in Africa might be different indicine populations than the ones found in North India today.


Asunto(s)
Bovinos , Genética de Población , Animales , Bovinos/genética , África , India , Cruzamiento
9.
BMC Genomics ; 24(1): 36, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36658480

RESUMEN

BACKGROUND: Several studies showed genome-wide DNA methylation during Arabidopsis embryogenesis and germination. Although it has been known that the change of DNA methylation mainly occurs at CHH context mediated by small RNA-directed DNA methylation pathway during seed ripening and germination, the causality of the methylation difference exhibited in natural Arabidopsis ecotypes has not been thoroughly studied. RESULTS: In this study we compared DNA methylation difference using comparative pairwise multi-omics dynamics in Columbia-0 (Col) and Cape Verde Island (Cvi) ecotypes. Arabidopsis genome was divided into two regions, common regions in both ecotypes and Col-specific regions, depending on the reads mapping of whole genome bisulfite sequencing libraries from both ecotypes. Ecotype comparison was conducted within common regions and the levels of DNA methylation on common regions and Col-specific regions were also compared. we confirmed transcriptome were relatively dynamic in stage-wise whereas the DNA methylome and small RNAome were more ecotype-dependent. While the global CG methylation remains steady during maturation and germination, we found genic CG methylation differs the most between the two accessions. We also found that ecotype-specific differentially methylated regions (eDMR) are positively correlated with ecotype-specifically expressed 24-nt small RNA clusters. In addition, we discovered that Col-specific regions enriched with transposable elements (TEs) and structural variants that tend to become hypermethylated, and TEs in Col-specific regions were longer in size, more pericentromeric, and more hypermethylated than those in the common regions. Through the analysis of RdDM machinery mutants, we confirmed methylation on Col-specific region as well as on eDMRs in common region are contributed by RdDM pathway. Lastly, we demonstrated that highly variable sequences between ecotypes (HOT regions) were also affected by RdDM-mediated regulation. CONCLUSIONS: Through ecotype comparison, we revealed differences and similarities of their transcriptome, methylome and small RNAome both in global and local regions. We validated the contribution of RdDM causing differential methylation of common regions. Hypermethylated ecotype-specific regions contributed by RNA-directed DNA methylation pathway largely depend on the presence of TEs and copy-gain structural variations. These ecotype-specific regions are frequently associated with HOT regions, providing evolutionary insights into the epigenome dynamics within a species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Ecotipo , Silenciador del Gen , Metilación de ADN , Proteínas de Arabidopsis/genética , ARN Interferente Pequeño/genética , Regulación de la Expresión Génica de las Plantas
10.
BMC Biol ; 20(1): 20, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039029

RESUMEN

BACKGROUND: Africa is an important watershed in the genetic history of domestic cattle, as two lineages of modern cattle, Bos taurus and B. indicus, form distinct admixed cattle populations. Despite the predominant B. indicus nuclear ancestry of African admixed cattle, B. indicus mitochondria have not been found on the continent. This discrepancy between the mitochondrial and nuclear genomes has been previously hypothesized to be driven by male-biased introgression of Asian B. indicus into ancestral African B. taurus. Given that this hypothesis mandates extreme demographic assumptions relying on random genetic drift, we propose a novel hypothesis of selection induced by mitonuclear incompatibility and assess these hypotheses with regard to the current genomic status of African admixed cattle. RESULTS: By analyzing 494 mitochondrial and 235 nuclear genome sequences, we first confirmed the genotype discrepancy between mitochondrial and nuclear genome in African admixed cattle: the absence of B. indicus mitochondria and the predominant B. indicus autosomal ancestry. We applied approximate Bayesian computation (ABC) to assess the posterior probabilities of two selection hypotheses given this observation. The results of ABC indicated that the model assuming both male-biased B. indicus introgression and selection induced by mitonuclear incompatibility explains the current genomic discrepancy most accurately. Subsequently, we identified selection signatures at autosomal loci interacting with mitochondria that are responsible for integrity of the cellular respiration system. By contrast with B. indicus-enriched genome ancestry of African admixed cattle, local ancestries at these selection signatures were enriched with B. taurus alleles, concurring with the key expectation of selection induced by mitonuclear incompatibility. CONCLUSIONS: Our findings support the current genome status of African admixed cattle as a potential outcome of male-biased B. indicus introgression, where mitonuclear incompatibility exerted selection pressure against B. indicus mitochondria. This study provides a novel perspective on African cattle demography and supports the role of mitonuclear incompatibility in the hybridization of mammalian species.


Asunto(s)
Cromosomas , Hibridación Genética , Alelos , Animales , Teorema de Bayes , Bovinos/genética , Genotipo , Masculino , Mamíferos
11.
Nature ; 538(7624): 201-206, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27654912

RESUMEN

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Genómica , Tasa de Mutación , Filogenia , Grupos Raciales/genética , Animales , Australia , Población Negra/genética , Conjuntos de Datos como Asunto , Genética de Población , Historia Antigua , Migración Humana/historia , Humanos , Nativos de Hawái y Otras Islas del Pacífico/genética , Hombre de Neandertal/genética , Nueva Guinea , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de Tiempo
12.
PLoS Genet ; 14(9): e1007650, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30188897

RESUMEN

Adaptive evolution in humans has rarely been characterized for its whole set of components, i.e. selective pressure, adaptive phenotype, beneficial alleles and realized fitness differential. We combined approaches for detecting polygenic adaptations and for mapping the genetic bases of physiological and fertility phenotypes in approximately 1000 indigenous ethnically Tibetan women from Nepal, adapted to high altitude. The results of genome-wide association analyses and tests for polygenic adaptations showed evidence of positive selection for alleles associated with more pregnancies and live births and evidence of negative selection for those associated with higher offspring mortality. Lower hemoglobin level did not show clear evidence for polygenic adaptation, despite its strong association with an EPAS1 haplotype carrying selective sweep signals.


Asunto(s)
Aclimatación/genética , Pueblo Asiatico/genética , Haplotipos/fisiología , Herencia Multifactorial/fisiología , Selección Genética/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Altitud , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Femenino , Estudio de Asociación del Genoma Completo , Hemoglobinas/análisis , Humanos , Persona de Mediana Edad , Nepal , Tibet
13.
Proc Natl Acad Sci U S A ; 115(48): E11248-E11255, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30397125

RESUMEN

Recent paleogenomic studies have shown that migrations of Western steppe herders (WSH) beginning in the Eneolithic (ca. 3300-2700 BCE) profoundly transformed the genes and cultures of Europe and central Asia. Compared with Europe, however, the eastern extent of this WSH expansion is not well defined. Here we present genomic and proteomic data from 22 directly dated Late Bronze Age burials putatively associated with early pastoralism in northern Mongolia (ca. 1380-975 BCE). Genome-wide analysis reveals that they are largely descended from a population represented by Early Bronze Age hunter-gatherers in the Baikal region, with only a limited contribution (∼7%) of WSH ancestry. At the same time, however, mass spectrometry analysis of dental calculus provides direct protein evidence of bovine, sheep, and goat milk consumption in seven of nine individuals. No individuals showed molecular evidence of lactase persistence, and only one individual exhibited evidence of >10% WSH ancestry, despite the presence of WSH populations in the nearby Altai-Sayan region for more than a millennium. Unlike the spread of Neolithic farming in Europe and the expansion of Bronze Age pastoralism on the Western steppe, our results indicate that ruminant dairy pastoralism was adopted on the Eastern steppe by local hunter-gatherers through a process of cultural transmission and minimal genetic exchange with outside groups.


Asunto(s)
Crianza de Animales Domésticos/historia , Genoma Humano , Dinámica Poblacional/historia , Animales , Arqueología , ADN Mitocondrial/genética , Europa (Continente) , Femenino , Historia Antigua , Migración Humana/historia , Humanos , Masculino , Mongolia
14.
Proc Natl Acad Sci U S A ; 113(27): 7485-90, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27325755

RESUMEN

The high-altitude transverse valleys [>3,000 m above sea level (masl)] of the Himalayan arc from Arunachal Pradesh to Ladahk were among the last habitable places permanently colonized by prehistoric humans due to the challenges of resource scarcity, cold stress, and hypoxia. The modern populations of these valleys, who share cultural and linguistic affinities with peoples found today on the Tibetan plateau, are commonly assumed to be the descendants of the earliest inhabitants of the Himalayan arc. However, this assumption has been challenged by archaeological and osteological evidence suggesting that these valleys may have been originally populated from areas other than the Tibetan plateau, including those at low elevation. To investigate the peopling and early population history of this dynamic high-altitude contact zone, we sequenced the genomes (0.04×-7.25×, mean 2.16×) and mitochondrial genomes (20.8×-1,311.0×, mean 482.1×) of eight individuals dating to three periods with distinct material culture in the Annapurna Conservation Area (ACA) of Nepal, spanning 3,150-1,250 y before present (yBP). We demonstrate that the region is characterized by long-term stability of the population genetic make-up despite marked changes in material culture. The ancient genomes, uniparental haplotypes, and high-altitude adaptive alleles suggest a high-altitude East Asian origin for prehistoric Himalayan populations.


Asunto(s)
Flujo Génico , Genoma Humano , Altitud , Humanos , Nepal , Paleodontología , Filogeografía , Análisis de Secuencia de ADN , Tibet
16.
BMC Genomics ; 18(1): 102, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28103797

RESUMEN

BACKGROUND: We set out to describe the fine-scale population structure across the Eastern region of Nepal. To date there is relatively little known about the genetic structure of the Sherpa residing in Nepal and their genetic relationship with the Nepalese. We assembled dense genotype data from a total of 1245 individuals representing Nepal and a variety of different populations resident across the greater Himalayan region including Tibet, China, India, Pakistan, Kazakhstan, Uzbekistan, Tajikistan and Kirghizstan. We performed analysis of principal components, admixture and homozygosity. RESULTS: We identified clear substructure across populations resident in the Himalayan arc, with genetic structure broadly mirroring geographical features of the region. Ethnic subgroups within Nepal show distinct genetic structure, on both admixture and principal component analysis. We detected differential proportions of ancestry from northern Himalayan populations across Nepalese subgroups, with the Nepalese Rai, Magar and Tamang carrying the greatest proportions of Tibetan ancestry. CONCLUSIONS: We show that populations dwelling on the Himalayan plateau have had a clear impact on the Northern Indian gene pool. We illustrate how the Sherpa are a remarkably isolated population, with little gene flow from surrounding Nepalese populations.


Asunto(s)
Pueblo Asiatico/genética , Etnicidad/genética , Cromosomas Humanos Y/genética , ADN/aislamiento & purificación , ADN/metabolismo , ADN Mitocondrial/genética , Flujo Génico , Genotipo , Humanos , Leucocitos/metabolismo , Funciones de Verosimilitud , Nepal , Análisis de Componente Principal
17.
Mamm Genome ; 25(11-12): 564-72, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24997021

RESUMEN

Closely related substrains of inbred mice often show phenotypic differences that are presumed to be caused by recent mutations. The substrains BALB/cJ and BALB/cByJ, which were separated in 1935, have been reported to show numerous highly significant behavioral and morphological differences. In an effort to identify some of the causal mutations, we phenotyped BALB/cJ and BALB/cByJ mice as well as their F1, F2, and N2 progeny for behavioral and morphological phenotypes. We also generated whole-genome sequence data for both inbred strains (~3.5× coverage) with the intention of identifying polymorphic markers to be used for linkage analysis. We observed significant differences in body weight, the weight of the heart, liver, spleen and brain, and corpus callosum length between the two substrains. We also observed that BALB/cJ animals showed greater anxiety-like behavior in the open field test, less depression-like behavior in the tail suspension test, and reduced aggression compared to BALB/cByJ mice. Some but not all of these physiological and behavioral results were inconsistent with prior publications. These inconsistencies led us to suspect that the differences were due to, or modified by, non-genetic factors. Thus, we did not perform linkage analysis. We provide a comprehensive summary of the prior literature about phenotypic differences between these substrains as well as our current findings. We conclude that many differences between these strains are unstable and therefore ill-suited to linkage analysis; the source of this instability is unclear. We discuss the broader implications of these observations for the design of future studies.


Asunto(s)
Ligamiento Genético , Fenotipo , Animales , Cuerpo Calloso/anatomía & histología , Variaciones en el Número de Copia de ADN , Femenino , Masculino , Ratones Endogámicos BALB C , Actividad Motora , Tamaño de los Órganos/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
18.
Genome Biol Evol ; 16(4)2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526010

RESUMEN

Human populations across a vast area in northern Eurasia, from Fennoscandia to Chukotka, share a distinct genetic component often referred to as the Siberian ancestry. Most enriched in present-day Samoyedic-speaking populations such as Nganasans, its origins and history still remain elusive despite the growing list of ancient and present-day genomes from Siberia. Here, we reanalyze published ancient and present-day Siberian genomes focusing on the Baikal and Yakutia, resolving key questions regarding their genetic history. First, we show a long-term presence of a unique genetic profile in southern Siberia, up to 6,000 yr ago, which distinctly shares a deep ancestral connection with Native Americans. Second, we provide plausible historical models tracing genetic changes in West Baikal and Yakutia in fine resolution. Third, the Middle Neolithic individual from Yakutia, belonging to the Belkachi culture, serves as the best source so far available for the spread of the Siberian ancestry into Fennoscandia and Greenland. These findings shed light on the genetic legacy of the Siberian ancestry and provide insights into the complex interplay between different populations in northern Eurasia throughout history.


Asunto(s)
Genética de Población , Genoma Humano , Pueblo del Norte de Asia , Humanos , Siberia
19.
Sci Data ; 11(1): 31, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177233

RESUMEN

Ellobium chinense is an airbreathing, pulmonate gastropod species that inhabits saltmarshes in estuaries of the northwestern Pacific. Due to a rapid population decline and their unique ecological niche in estuarine ecosystems, this species has attracted special attention regarding their conservation and the genomic basis of adaptation to frequently changing environments. Here we report a draft genome assembly of E. chinense with a total size of 949.470 Mb and a scaffold N50 of 1.465 Mb. Comparative genomic analysis revealed that the GO terms enriched among four gastropod species are related to signal transduction involved in maintaining electrochemical gradients across the cell membrane. Population genomic analysis using the MSMC model for 14 re-sequenced individuals revealed a drastic decline in Korean and Japanese populations during the last glacial period, while the southern Chinese population retained a much larger effective population size (Ne). These contrasting demographic changes might be attributed to multiple environmental factors during the glacial-interglacial cycles. This study provides valuable genomic resources for understanding adaptation and historical demographic responses to climate change.


Asunto(s)
Genoma , Metagenómica , Caracoles , Animales , Ecosistema , Genómica , Caracoles/genética
20.
Nat Commun ; 15(1): 4874, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849341

RESUMEN

Evidence for adaptation of human skin color to regional ultraviolet radiation suggests shared and distinct genetic variants across populations. However, skin color evolution and genetics in East Asians are understudied. We quantified skin color in 48,433 East Asians using image analysis and identified associated genetic variants and potential causal genes for skin color as well as their polygenic interplay with sun exposure. This genome-wide association study (GWAS) identified 12 known and 11 previously unreported loci and SNP-based heritability was 23-24%. Potential causal genes were determined through the identification of nonsynonymous variants, colocalization with gene expression in skin tissues, and expression levels in melanocytes. Genomic loci associated with pigmentation in East Asians substantially diverged from European populations, and we detected signatures of polygenic adaptation. This large GWAS for objectively quantified skin color in an East Asian population improves understanding of the genetic architecture and polygenic adaptation of skin color and prioritizes potential causal genes.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Pigmentación de la Piel , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adaptación Fisiológica/genética , Mapeo Cromosómico , Herencia Multifactorial/genética , Sitios de Carácter Cuantitativo/genética , Pigmentación de la Piel/genética , Rayos Ultravioleta , Pueblos del Este de Asia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA