Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Nanotechnology ; 35(18)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38271739

RESUMEN

We studied the phase change and resistive switching characteristics of copper oxide (CuxO) films through post-thermal annealing. This investigation aimed to assess the material's potential for a variety of electrical devices, exploring its versatility in electronic applications. The CuxO films deposited by RF magnetron sputtering were annealed at 300, 500, and 700 °C in ambient air for 4 min by rapid thermal annealing (RTA) method, and then it was confirmed that the structural phase change from Cu2O to CuO occurred with increasing annealing temperature. Resistive random-access memory (ReRAM) devices with Au/CuxO/p+-Si structures were fabricated, and the ReRAM properties appeared in CuO-based devices, while Cu2O ReRAM devices did not exhibit resistive switching behavior. The CuO ReRAM device annealed at 500 °C showed the best properties, with a on/off ratio of 8 × 102, good switching endurance of ∼100 cycles, data retention for 104s, and stable uniformity in the cumulative probability distribution. This characteristic change could be explained by the difference in the grain size and density of defects between the Cu2O and CuO films. These results demonstrate that superior and stable resistive switching properties of RF-sputtered CuxO films can be obtained by low-temperature RTA.

2.
Appl Opt ; 62(18): 4805-4812, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37707255

RESUMEN

We present an integrating hemisphere-based (i.e., a variant of integrating spheres) implementation of the indirect illumination method for absolute photoluminescence quantum yield measurements, which is a recommended method in the international standard IEC 62607-3-1:2014. We rigorously formulated a mathematical model and a measurement procedure for the absolute photoluminescence quantum yield measurement in the integrating hemisphere-based system. The measurement system was calibrated using an Hg-Ar discharge lamp and spectral irradiance standard lamps for wavelength and relative spectral radiant flux scales, respectively. Furthermore, we identified and evaluated uncertainty components involved in the photoluminescence quantum yield (PLQY) measurement. To validate our measurement system, we applied it to the two de facto standard dyes: quinine bisulfate (QBS) and fluorescein (FLS). Consequently, their PLQY values were determined to be 0.563±0.024 (k=2) and 0.876±0.032 (k=2) for, respectively, QBS and FLS, which are consistent with previous reports.

3.
J Am Chem Soc ; 143(5): 2340-2347, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33502184

RESUMEN

APbBr3 (A = Cs, CH3NH3) are prototype halide perovskites having bandgaps of 2.30-2.35 eV at room temperature, rendering their apparent color nearly identical (bright orange but opaque). Upon optical excitation, they emit bright photoluminescence (PL) arising from carrier recombination whose spectral features are also similar. At 10 K, however, the apparent color of CsPbBr3 becomes transparent yellow, whereas that of CH3NH3PbBr3 does not change significantly due to the presence of an indirect Rashba gap. With increasing the excitation level, evolution of the PL spectra, which are excitonic at 10 K, reveals the emergence of P-band emission arising from inelastic exciton-exciton scattering. Based on the spectral location of the P-band, exciton binding energies are determined to be 21.6 ± 2.0 and 38.3 ± 3.0 meV for CsPbBr3 and CH3NH3PbBr3, respectively. Intriguingly, upon further increase in the exciton density, electron-hole plasma appears in CsPbBr3 as evidenced by both red-shift and broadening of the PL. This phase, however, does not occur in CH3NH3PbBr3 presumably due to polaronic effects. Although the A-site cation is believed not to directly impact optical properties of APbBr3, our results underscore its critical role, which destines different high-density phases and apparent color at low temperatures.

4.
Nano Lett ; 20(4): 2370-2377, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32031411

RESUMEN

We study the electronic and optoelectronic properties of a broken-gap heterojunction composed of SnSe2 and MoTe2 with gate-controlled junction modes. Owing to the interband tunneling current, our device can act as an Esaki diode and a backward diode with a peak-to-valley current ratio approaching 5.7 at room temperature. Furthermore, under an 811 nm laser irradiation the heterostructure exhibits a photodetectivity of up to 7.5 × 1012 Jones. In addition, to harness the electrostatic gate bias, Voc can be tuned from negative to positive by switching from the accumulation mode to the depletion mode of the heterojunction. Additionally, a photovoltaic effect with a fill factor exceeding 41% was observed, which highlights the significant potential for optoelectronic applications. This study not only demonstrates high-performance multifunctional optoelectronics based on the SnSe2/MoTe2 heterostructure but also provides a comprehensive understanding of broken-band alignment and its applications.

5.
J Am Chem Soc ; 142(50): 21059-21067, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33217232

RESUMEN

Recently, halide perovskites have gained significant attention from the perspective of efficient spintronics owing to the Rashba effect. This effect occurs as a consequence of strong spin-orbit coupling under a noncentrosymmetric environment, which can be dynamic and/or static. However, there exist intense debates on the origin of broken inversion symmetry since the halide perovskites typically crystallize into a centrosymmetric structure. In order to clarify the issue, we examine both dynamic and static effects in the all-inorganic CsPbBr3 and organic-inorganic CH3NH3PbBr3 (MAPbBr3) perovskite single crystals by employing temperature- and polarization-dependent photoluminescence excitation spectroscopy. The perovskite single crystals manifest the dynamic effect by photon recycling in the indirect Rashba gap, causing dual peaks in the photoluminescence. However, the effect vanishes in CsPbBr3 at low temperatures (<50 K) accompanied by a striking color change of the crystal, arising presumably from lower degrees of freedom for inversion symmetry breaking associated with the thermal motion of the spherical Cs cation compared with the polar MA cation in MAPbBr3. We also show that the static Rashba effect occurs only in MAPbBr3 below 90 K, presumably due to surface reconstruction via MA-cation ordering, which likely extends across a few layers from the crystal surface to the interior. We further demonstrate that this static Rashba effect can be completely suppressed upon surface treatment with polymethyl methacrylate (PMMA) coating. We believe that our results provide a rationale for the Rashba effects in halide perovskites.

6.
Nano Lett ; 18(4): 2316-2323, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29561626

RESUMEN

Monolayer (1L) transition metal dichalcogenides (TMDCs) are promising materials for nanoscale optoelectronic devices because of their direct band gap and wide absorption range (ultraviolet to infrared). However, 1L-TMDCs cannot be easily utilized for practical optoelectronic device applications (e.g., photodetectors, solar cells, and light-emitting diodes) because of their extremely low optical quantum yields (QYs). In this investigation, a high-gain 1L-MoS2 photodetector was successfully realized, based on the surface plasmon (SP) of the Ag nanowire (NW) network. Through systematic optical characterization of the hybrid structure consisting of a 1L-MoS2 and the Ag NW network, it was determined that a strong SP and strain relaxation effect influenced a greatly enhanced optical QY. The photoluminescence (PL) emission was drastically increased by a factor of 560, and the main peak was shifted to the neutral exciton of 1L-MoS2. Consequently, the overall photocurrent of the hybrid 1L-MoS2 photodetector was observed to be 250 times better than that of the pristine 1L-MoS2 photodetector. In addition, the photoresponsivity and photodetectivity of the hybrid photodetector were effectively improved by a factor of ∼1000. This study provides a new approach for realizing highly efficient optoelectronic devices based on TMDCs.

7.
Small ; 13(39)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28834243

RESUMEN

High-quality and large-area molybdenum disulfide (MoS2 ) thin film is highly desirable for applications in large-area electronics. However, there remains a challenge in attaining MoS2 film of reasonable crystallinity due to the absence of appropriate choice and control of precursors, as well as choice of suitable growth substrates. Herein, a novel and facile route is reported for synthesizing few-layered MoS2 film with new precursors via chemical vapor deposition. Prior to growth, an aqueous solution of sodium molybdate as the molybdenum precursor is spun onto the growth substrate and dimethyl disulfide as the liquid sulfur precursor is supplied with a bubbling system during growth. To supplement the limiting effect of Mo (sodium molybdate), a supplementary Mo is supplied by dissolving molybdenum hexacarbonyl (Mo(CO)6 ) in the liquid sulfur precursor delivered by the bubbler. By precisely controlling the amounts of precursors and hydrogen flow, full coverage of MoS2 film is readily achievable in 20 min. Large-area MoS2 field effect transistors (FETs) fabricated with a conventional photolithography have a carrier mobility as high as 18.9 cm2 V-1 s-1 , which is the highest reported for bottom-gated MoS2 -FETs fabricated via photolithography with an on/off ratio of ≈105 at room temperature.

8.
Phys Chem Chem Phys ; 19(13): 9143-9148, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28317983

RESUMEN

We explore a new characterization approach capable of probing the grain interior (GI) and grain boundary (GB) of a CH3NH3PbI3-xClx perovskite thin film. In particular, we have found that the photoluminescence (PL) spectrum observed for a CH3NH3PbI3-xClx perovskite thin film is asymmetric, and can be deconvoluted using a bi-Gaussian function, representing the ordered and disordered phases of the perovskite film. In order to understand the origin of the ordered and disordered phases of the perovskite film, two-dimensional (2D) PL mapping was performed to resolve the PL spectra at the nanoscale level. Quantitative analysis of the local PL spectra revealed that the ordered phase originated from the GIs while the disordered phase mainly came from the GBs. In particular, power-dependent PL measurements of the deconvoluted PL spectra revealed that smaller grained perovskites showed defect-mediated recombination at GBs but exciton-like transitions at GIs. In contrast, perovskite films with large grains followed an excellent power law, showing exciton-like recombination at both GIs and GBs. As expected, perovskite solar cells fabricated with large grains showed an increased efficiency with higher light absorption and higher charge extraction efficiency.

9.
Phys Chem Chem Phys ; 19(29): 19487-19495, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28718472

RESUMEN

While organo-inorganic halide perovskite solar cells show great potential to meet future energy needs, their thermal instability raises serious questions about their commercialization viability. At present, the stability of perovskite solar cells has been studied under various environmental conditions including humidity and temperature. Nonetheless, understanding of the performance of CH3NH3PbI3-xClx perovskite solar cells is limited. This study reports the irreversible performance degradation of CH3NH3PbI3-xClx perovskite solar cells during the heating and cooling processes under AM 1.5 and unveils what triggers the irreversible performance degradation of solar cells. Particularly, the primary cause of the irreversible performance degradation of CH3NH3PbI3-xClx is quantitatively analyzed by monitoring in real time the development of deteriorated crystallinity, charge trapping/detrapping, trap depth, and the PbI2 phase, namely a critical signal of perovskite degradation while varying the temperature of the perovskite films and solar cells. Most surprisingly, it is revealed that the degradation of both perovskite films and solar cells was triggered at ∼70 °C. Remarkably, even after the device temperature cooled down to room temperature, the degraded performance of the solar cells persisted with increasing charge trapping and further development of the PbI2 phase. Identification of the irreversible performance degradation of perovskite solar cells provides guidance for future development of more stable perovskite solar cells.

10.
Nano Lett ; 16(3): 1858-62, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26886870

RESUMEN

We present a novel metal-insulator-semiconductor (MIS) diode consisting of graphene, hexagonal BN, and monolayer MoS2 for application in ultrathin nanoelectronics. The MIS heterojunction structure was fabricated by vertically stacking layered materials using a simple wet chemical transfer method. The stacking of each layer was confirmed by confocal scanning Raman spectroscopy and device performance was evaluated using current versus voltage (I-V) and photocurrent measurements. We clearly observed better current rectification and much higher current flow in the MIS diode than in the p-n junction and the metal-semiconductor diodes made of layered materials. The I-V characteristic curve of the MIS diode indicates that current flows mainly across interfaces as a result of carrier tunneling. Moreover, we observed considerably high photocurrent from the MIS diode under visible light illumination.

11.
Small ; 12(8): 994-9, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26728175

RESUMEN

PEG-functionalized graphene quantum dots (GQDs) are shown to promote fast exciton dissociation in organic solar cells. Short-chain PEG promotes the most favorable interaction with other organic layers, and the overall efficiency is improved by 36% when compared to the reference devices. The mechanism of enhancement is shown to be increased absorption due to fewer charges remain-ing in the bound state.

12.
Nanotechnology ; 27(46): 465706, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27758974

RESUMEN

Silver nanowires (Ag NWs) have received considerable attention for flexible transparent conductive films (TCFs) since they provide a relatively low sheet resistance at a high transmittance. However, the diffuse light scattering, haze, has been regarded as a hurdle to achieve clarity of films. Here we revisit the Mie scattering theory to calculate the extinction and scattering coefficients of Ag NWs which were employed to estimate haze of TCFs. The theory predicted a decrease in haze with a decrease in Ag NW diameter which was supported by experimental investigations carried out using Ag NWs with 5 different diameters (17.6, 19.9, 22.5, 24.3, and 29.6 nm). Overall, excellent properties of TCFs (haze = 0.21%-1.8%, transmittance = 95.33%-98.45%, sheet resistance = 20.87-81.76 Ω sq-1) were obtained. Ag NWs with a diameter of 17.6 nm provided minimum haze values at equivalent sheet resistances (e.g., haze = 0.21%, transmittance = 98.45%, sheet resistance = 77.36 Ω sq-1) compared with ones with lager diameters and the controls in literatures. This work investigated the interdependence between haze and NW diameter and might provide a design guide for flexible Ag NW TCFs.

13.
Opt Express ; 23(18): 23195-207, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26368422

RESUMEN

Optimal length of ZnO nanorods (NRs) on blue InGaN light-emitting diodes (LEDs) was investigated to improve the light-extraction efficiency (LEE) of the LED. X-ray diffraction, photoluminescence spectroscopy, and micro-Raman spectroscopy were employed to determine the structural and optical properties of the ZnO NRs with length of 300 nm and 5 µm grown by a hydrothermal method. From the conventional light output power versus injection current (L-I) measurement, we found that the light output power of the LEDs with 300-nm- and 5-µm-long ZnO NRs was approximately 14.6% and 40.7% greater, respectively, than that of the LED without the ZnO NRs at an operating current of 20 mA. In addition, there were almost no changes to the electrical properties of the ZnO-NR-coated LEDs. The effect of the length of the ZnO NRs on the LEE of the LEDs was theoretically verified with three-dimensional finite-difference time-domain (FDTD) analysis. The FDTD images of the optical power and far-field radiation patterns of the LEDs showed that more photons were guided to the out of the LED by the longer ZnO NRs than by the shorter ZnO NRs grown on the LEDs.

14.
Small ; 10(10): 2057-66, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24578338

RESUMEN

We present a straightforward method for simultaneously enhancing the electrical conductivity, environmental stability, and photocatalytic properties of graphene films through one-step transfer of CVD graphene and integration by introducing TiO2/graphene oxide layer. A highly durable and flexible TiO2 layer is successfully used as a supporting layer for graphene transfer instead of the commonly used PMMA. Transferred graphene/TiO2 film is directly used for measuring the carrier transport and optoelectronic properties without an extra TiO2 removal and following deposition steps for multifunctional integration into devices because the thin TiO2 layer is optically transparent and electrically semiconducting. Moreover, the TiO2 layer induces charge screening by electrostatically interacting with the residual oxygen moieties on graphene, which are charge scattering centers, resulting in a reduced current hysteresis. Adsorption of water and other chemical molecules onto the graphene surface is also prevented by the passivating TiO2 layer, resulting in the long term environmental stability of the graphene under high temperature and humidity. In addition, the graphene/TiO2 film shows effectively enhanced photocatalytic properties because of the increase in the transport efficiency of the photogenerated electrons due to the decrease in the injection barrier formed at the interface between the F-doped tin oxide and TiO2 layers.

15.
Nanotechnology ; 25(7): 075704, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24457601

RESUMEN

A resonant shift and a decrease of resonance quality of a tuning fork attached to a conventional fiber optic probe in the vicinity of liquid is monitored systematically while varying the protrusion length and immersion depth of the probe. Stable zones where the resonance modification as a function of immersion depth is minimized are observed. A wet near-field scanning optical microscope (wet-NSOM) is operated for a sample within water by using such a stable zone.


Asunto(s)
Microscopía/instrumentación , Microscopía/métodos , Nanotecnología/métodos , Simulación por Computador , Diseño de Equipo , Microscopía de Sonda de Barrido/instrumentación , Óptica y Fotónica , Oscilometría , Programas Informáticos , Propiedades de Superficie , Vibración , Viscosidad , Agua/química
16.
J Nanosci Nanotechnol ; 14(8): 5961-4, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25936036

RESUMEN

A laser fabrication method was developed to make gold nanoparticle clustered (GNC) tips for apertureless near-field scanning optical microscopes (ANSOMs) and tip-enhanced Raman spectroscopy (TERS). The near-field Rayleigh and Raman scattering of samples are highly enhanced when a gold nanoparticle cluster is synthesized on the end of the tip. This is due to the lightning rod effect in the sharp tips. The localized electromagnetic field enhancement and the spatial resolution (~30 nm) of the fabricated GNC tip were verified by TERS and ANSOM measurements of carbon nanotubes.


Asunto(s)
Oro/química , Nanopartículas del Metal , Microscopía/métodos
17.
J Phys Chem Lett ; 15(19): 5183-5190, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38716924

RESUMEN

Recently, various fundamental properties of GaPS4 such as anisotropy and strain-induced properties have been reported, but the impacts of the stacking sequence in layered materials remain ambiguous. This ambiguity is evident in the inconsistent Raman scattering data reported for GaPS4, suggesting a significant influence of stacking order on its physical properties. To demonstrate the discrepancies, this study investigates the vibrational characteristics of 2D GaPS4 under different stacking sequences using both experimental observations and theoretical models (AA and AB sequences) through density functional theory calculations. The results of our theoretical calculations revealed that the identical stacking sequence structure significantly influences the vibrational configurations of GaPS4, which results in divergent configurations of Raman scattering spectra including unidentified Raman peaks. Our study addresses not only the clarification of the ambiguity of experimental observations but also qualitative criteria to evaluate the degree of each stacking sequence.

18.
Nanoscale ; 16(22): 10779-10788, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38757983

RESUMEN

The properties of transition metal dichalcogenides (TMDCs) are critically dependent on the dielectric constant of substrates, which significantly limits their application. To address this issue, we used a perfluorinated polyether (PFPE) self-assembled monolayer (SAM) with low surface energy to increase the van der Waals (vdW) gap between TMDCs and the substrate, thereby reducing the interaction between them. This resulted in a reduction in the subthreshold swing value, an increase in the photoluminescence intensity of excitons, and a decrease in the doping effect by the substrate. This work will provide a new way to control the TMDC/dielectric interface and contribute to expanding the applicability of TMDCs.

19.
ACS Nano ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920103

RESUMEN

This study investigates the applicability of six transition metal dichalcogenides to efficient therapeutic drug monitoring of ten antiepileptic drugs using laser desorption/ionization-mass spectrometry. We found that molybdenum ditelluride and tungsten ditelluride are suitable for the sensitive quantification of therapeutic drugs. The contribution of tellurium to the enhanced efficiency of laser desorption ionization was validated through theoretical calculations utilizing an integrated model that incorporates transition-metal dichalcogenides and antiepileptic drugs. The results of our theoretical calculations suggest that the relatively low surface electron density for the tellurium-containing transition metal dichalcogenides induces stronger Coulombic interactions, which results in enhanced laser desorption and ionization efficiency. To demonstrate applicability, up to 120 patient samples were analyzed to determine drug concentrations, and the results were compared with those of immunoassay and liquid chromatography-tandem mass spectrometry. Agreements among these methods were statistically evaluated using the Passing-Bablok regression and Bland-Altman analysis. Furthermore, our method has been shown to be applicable to the simultaneous detection and multiplexed quantification of antiepileptic drugs.

20.
ACS Nano ; 18(5): 4432-4442, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38284564

RESUMEN

Two-dimensional transition-metal dichalcogenides have attracted significant attention because of their unique intrinsic properties, such as high transparency, good flexibility, atomically thin structure, and predictable electron transport. However, the current state of device performance in monolayer transition-metal dichalcogenide-based optoelectronics is far from commercialization, because of its substantial strain on the heterogeneous planar substrate and its robust metal deposition, which causes crystalline damage. In this study, we show that strain-relaxed and undamaged monolayer WSe2 can improve a device performance significantly. We propose here an original point-cell-type photodetector. The device consists in a monolayer of an absorbing TMD (i.e., WSe2) simply deposited on a structured electrode, i.e., core-shell silicon-gold nanopillars. The maximum photoresponsivity of the device is found to be 23.16 A/W, which is a significantly high value for monolayer WSe2-based photodetectors. Such point-cell photodetectors can resolve the critical issues of 2D materials, leading to tremendous improvements in device performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA