Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 9(2): 806-17, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20028079

RESUMEN

The central role of kinases in cell signaling has set them in the focus of biomedical research. In functional proteomics analyses, large- scale profiling of kinases has become feasible through the use of affinity pulldown beads that carry immobilized kinase inhibitors. As an alternative approach to solid phase beads, Capture Compound Mass Spectrometry (CCMS) enables the functional isolation of protein-classes on the basis of small molecule-protein interactions in solution. Capture Compounds are trifunctional probes: a selectivity function interacts with the native target proteins in equilibrium, upon irradiation a photoactivatable reactivity function forms an irreversible covalent bond to the target proteins, and a sorting function allows the captured proteins to be isolated from a complex protein mixture. We report the design and application of a novel, fully water-soluble Capture Compound that carries the broadband kinase inhibitor staurosporine as selectivity function. We used this Capture Compound to profile the kinome of the human liver-derived cell line HepG2 and identified one hundred kinases. HepG2 cells are a widely used model system for hepatocarcinoma, hepatitis, and for investigation of drug toxicity effects. CCMS experiments in membrane fractions of human placenta are given as example for the applicability to human tissue.


Asunto(s)
Hepatocitos/efectos de los fármacos , Espectrometría de Masas/métodos , Fosfotransferasas/metabolismo , Estaurosporina/farmacología , Línea Celular , Electroforesis en Gel de Poliacrilamida , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Modelos Moleculares , Estaurosporina/metabolismo
2.
Biochim Biophys Acta ; 1787(12): 1458-67, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19540827

RESUMEN

The two open reading frames in the Synechocystis sp. PCC 6803 genome, sll1214 and sll1874, here designated cycI and cycII, respectively, encode similar proteins, which are involved in the Mg protoporphyrin monomethylester (MgProtoME) cyclase reaction. The impairment of tetrapyrrole biosynthesis was examined by separate inactivation of both cyclase encoding genes followed by analysis of chlorophyll contents, MgProtoME levels and several enzyme activities of tetrapyrrole biosynthesis. We additionally addressed the question, whether the two isoforms can complement cyclase deficiency under normal aerobic and micro-oxic growth conditions in light. A cycII knock-out mutant grew without any adverse symptoms at normal air conditions, but showed MgProtoME accumulation at growth under low oxygen conditions. A complete deletion of cycI failed in spite of mixotrophic growth and low light at both ambient and low oxygen, but resulted in accumulation of 150 and 28 times more MgProtoME, respectively, and circa 60% of the wild-type chlorophyll content. The CycI deficiency induced a feedback-controlled limitation of the metabolic flow in the tetrapyrrole biosynthetic pathway by reduced ALA synthesis and Fe chelatase activity. Ectopic expression of the CycI protein restored the wild-type phenotype in cycI(-) mutant cells under ambient air as well as micro-oxic growth conditions. Overexpressed CycII protein could not compensate for cycI(-) mutation under micro-oxic and aerobic growth conditions, but complemented the cycII knock-out mutant as indicated by wild-type MgProtoME and chlorophyll levels. Our findings indicate the essential contribution of CycI to the cyclase reaction at ambient and low oxygen conditions, while low oxygen conditions additionally require CycII for the cyclase activity.


Asunto(s)
Oxigenasas/fisiología , Synechocystis/genética , Aerobiosis , Mutación , Sistemas de Lectura Abierta , Oxigenasas/genética , Protoporfirinas/biosíntesis , Synechocystis/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA