RESUMEN
Conducting quantum key distribution (QKD) through existing optical fibers together with conventional communication signals is a viable way to expand its practical application, but weak quantum signals can be severely disrupted by co-propagating classical signals. In this paper, the suppression of four-wave mixing (FWM) noise and Raman noise is considered simultaneously for the first time, to the best of our knowledge, and the joint optimized channel allocation (JOCA) scheme is proposed. In the JOCA scheme, the quantum channels and classical channels are interleaved with each other to avoid FWM noise and optimal quantum channel positions are chosen in variable conditions according to the Raman scattering spectrum. Experimental measurements of the noise photons show that the JOCA scheme can effectively reduce the impairments on quantum signals compared with the single-target schemes. Additionally, simulation results verify that the JOCA scheme can increase the secure key generation rate and transmission distance, and that it also enables the DWDM-QKD system to tolerate higher-power classical signals and more classical channels, which improve the compatibility with a high-capacity communication system.
RESUMEN
The ability to detect nanoscale objects is particular crucial for a wide range of applications, such as environmental protection, early-stage disease diagnosis and drug discovery. Photonic crystal nanobeam cavity (PCNC) sensors have attracted great attention due to high-quality factors and small-mode volumes (Q/V) and good on-chip integrability with optical waveguides/circuits. In this review, we focus on nanoscale optical sensing based on PCNC sensors, including ultrahigh figure of merit (FOM) sensing, single nanoparticle trapping, label-free molecule detection and an integrated sensor array for multiplexed sensing. We believe that the PCNC sensors featuring ultracompact footprint, high monolithic integration capability, fast response and ultrahigh sensitivity sensing ability, etc., will provide a promising platform for further developing lab-on-a-chip devices for biosensing and other functionalities.