Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
IEEE Trans Med Imaging ; PP2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900619

RESUMEN

This paper introduces an innovative methodology for producing high-quality 3D lung CT images guided by textual information. While diffusion-based generative models are increasingly used in medical imaging, current state-of-the-art approaches are limited to low-resolution outputs and underutilize radiology reports' abundant information. The radiology reports can enhance the generation process by providing additional guidance and offering fine-grained control over the synthesis of images. Nevertheless, expanding text-guided generation to high-resolution 3D images poses significant memory and anatomical detail-preserving challenges. Addressing the memory issue, we introduce a hierarchical scheme that uses a modified UNet architecture. We start by synthesizing low-resolution images conditioned on the text, serving as a foundation for subsequent generators for complete volumetric data. To ensure the anatomical plausibility of the generated samples, we provide further guidance by generating vascular, airway, and lobular segmentation masks in conjunction with the CT images. The model demonstrates the capability to use textual input and segmentation tasks to generate synthesized images. Algorithmic comparative assessments and blind evaluations conducted by 10 board-certified radiologists indicate that our approach exhibits superior performance compared to the most advanced models based on GAN and diffusion techniques, especially in accurately retaining crucial anatomical features such as fissure lines and airways. This innovation introduces novel possibilities. This study focuses on two main objectives: (1) the development of a method for creating images based on textual prompts and anatomical components, and (2) the capability to generate new images conditioning on anatomical elements. The advancements in image generation can be applied to enhance numerous downstream tasks.

2.
medRxiv ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39040167

RESUMEN

The proliferation of medical podcasts has generated an extensive repository of audio content, rich in specialized terminology, diverse medical topics, and expert dialogues. Here we introduce a computational framework designed to enhance large language models (LLMs) by leveraging the informational content of publicly accessible medical podcast data. This dataset, comprising over 4, 300 hours of audio content, was transcribed to generate over 39 million text tokens. Our model, MedPodGPT, integrates the varied di-alogue found in medical podcasts to improve understanding of natural language nuances, cultural contexts, and medical knowledge. Evaluated across multiple benchmarks, MedPodGPT demonstrated an average improvement of 2.31% over standard open-source benchmarks and showcased an improvement of 2.58% in its zero-shot multilingual transfer ability, effectively generalizing to different linguistic contexts. By harnessing the untapped potential of podcast content, MedPodGPT advances natural language processing, offering enhanced capabilities for various applications in medical research and education.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA