Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(29): 10662-10672, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37449976

RESUMEN

This study explored the response of NO3--N bioreduction to Cr(VI) stress, including reduction efficiency and the pathways involved (denitrification and dissimilatory nitrate reduction to ammonium (DNRA)). Different response patterns of NO3--N conversion were proposed under Cr(VI) suppress (0, 0.5, 5, 15, 30, 50, and 80 mg/L) by evaluating Cr(VI) dose dependence, toxicity accumulation, bioelectron behavior, and microbial community structure. Cr(VI) concentrations of >30 mg/L rapidly inhibited NO3--N removal and immediately induced DNRA. However, denitrification completely dominated the NO3--N reduction pathway at Cr(VI) concentrations of <15 mg/L. Therefore, 30 and 80 mg/L Cr(VI) (R4 and R6) were selected to explore the selection of the different NO3--N removal pathways. The pathway of NO3--N reduction at 30 mg/L Cr(VI) exhibited continuous adaptation, wherein the coexistence of denitrification (51.7%) and DNRA (13.6%) was achieved by regulating the distribution of denitrifiers (37.6%) and DNRA bacteria (32.8%). Comparatively, DNRA gradually replaced denitrification at 80 mg/L Cr(VI). The intracellular Cr(III) accumulation in R6 was 6.60-fold greater than in R4, causing more severe oxidant injury and cell death. The activated NO3--N reduction pathway depended on the value of nitrite reductase activity/nitrate reductase activity, with 0.84-1.08 associated with DNRA activation and 1.48-1.57 with DNRA predominance. Although Cr(VI) increased microbial community richness and improved community structure stability, the inhibition or death of nitrogen-reducing microorganisms caused by Cr(VI) decreased NO3--N reduction efficiency.


Asunto(s)
Compuestos de Amonio , Nitratos , Nitratos/química , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Desnitrificación , Nitrógeno/metabolismo , Oxidación-Reducción
2.
J Environ Sci (China) ; 126: 70-80, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503795

RESUMEN

Chromium is an important resource in strategic metals. Different from most studies focusing on the bio-reduction of hexavalent chromium [Cr(VI)], this study aims to achieve the immobilization and recovery of chromium using a sequencing batch biofilm reactor. Results showed that Cr(VI) removal efficiency remained more than 99%, and 97% of reduced Cr(III) was immobilized in the biofilm. Immobilization zone, chromium forms and extracellular polymeric substances composition changes were combined to reveal the mechanism of Cr(VI) reduction and immobilization. The chromium distribution in biofilm demonstrated that intercellular layer was the main active zone with an immobilization amount of 891.70±126.32 mg/g-VSS. The reduced products analysis confirmed that trivalent chromium [Cr(III)] chelated with carboxyl, amino and other functional groups and immobilized in the form of organic Cr(III). The digestion method realized a chromium recovery efficiency of 74.59%. This study provides an alternative method for the bioremediation and resources recovery in chromium polluted wastewater.


Asunto(s)
Biopelículas , Cromo , Matriz Extracelular de Sustancias Poliméricas , Aguas Residuales
3.
Bioresour Technol ; 380: 129088, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37094618

RESUMEN

The bio-electron behavior (electron production, transmission, and consumption) response to a typical heavy metal, hexavalent chromium, was unraveled in the electron donor limited system (EDLS) and electron donor sufficient system (EDSS). Nicotinamide adenine dinucleotide and adenosine triphosphate production were reduced by 44% and 47%, respectively, due to glucose metabolism inhibition, leading to NO3--N declining to 31% in EDLS. The decreased electron carrier contents and denitrifying enzymes activity inhibited electron transmission and consumption in both EDLS and EDSS. Additionally, electron transfer and antioxidant stress abilities were reduced, further hindering the survival of denitrifiers in EDLS. The lack of dominant genera (Comamonas, Thermomonas, and Microbacterium) in EDLS was the primary reason for poor biofilm formation and chromium adaptability. The decreased expression of enzymes related to glucose metabolism caused the imbalance of electron supply, transport, and consumption in EDLS, adversely impacting nitrogen metabolism and inhibiting denitrification performance.


Asunto(s)
Desnitrificación , Electrones , Cromo/metabolismo , Glucosa
4.
J Hazard Mater ; 432: 128697, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35334263

RESUMEN

Chromium is widely applied in industries as an important metal resource, but the discharge of Cr(VI) containing wastewater leads to the loss of chromium resources. This study proposed a bio-capture process of chromium in a denitrification system. The bio-capture potentiality was explored by investigating the electron competition between Cr(VI) and nitrogen compounds reduction, the long-term bio-capture performance, and the microbial community evolution. In the competition utilization of electron donors, both NO3--N and NO2--N took precedence over Cr(VI), and NO2--N reduction was proved to be the rate-limiting step. Under the optimum conditions of 20 mg/L NO3--N and 6 h HRT, 99.95% of 30 mg/L Cr(VI) could be reduced, and 220980 µg Cr/g MLSS was captured by the biofilm, which was fixed in intercellular as Cr(III). Microbiological analysis confirmed that the bio-reduction of Cr(VI) and NO3--N was mediated by synergistic interactions of a series of dominant bacteria, including genera Acidovorax, Thermomonas, and Microbacterium, which contained both the denitrification genes (narG, narZ, nxrA, and nirK) and chromate reduction genes (chrA and chrR). This study proved the feasibility of chromium bio-capture in denitrification systems and provided a new perspective for the Cr(VI) pollution treatment.


Asunto(s)
Desnitrificación , Microbiota , Cromo , Electrones , Nitratos , Dióxido de Nitrógeno , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA