Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(30): e2216329120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37478163

RESUMEN

To accomplish concerted physiological reactions, nature has diversified functions of a single hormone at at least two primary levels: 1) Different receptors recognize the same hormone, and 2) different cellular effectors couple to the same hormone-receptor pair [R.P. Xiao, Sci STKE 2001, re15 (2001); L. Hein, J. D. Altman, B.K. Kobilka, Nature 402, 181-184 (1999); Y. Daaka, L. M. Luttrell, R. J. Lefkowitz, Nature 390, 88-91 (1997)]. Not only these questions lie in the heart of hormone actions and receptor signaling but also dissecting mechanisms underlying these questions could offer therapeutic routes for refractory diseases, such as kidney injury (KI) or X-linked nephrogenic diabetes insipidus (NDI). Here, we identified that Gs-biased signaling, but not Gi activation downstream of EP4, showed beneficial effects for both KI and NDI treatments. Notably, by solving Cryo-electron microscope (cryo-EM) structures of EP3-Gi, EP4-Gs, and EP4-Gi in complex with endogenous prostaglandin E2 (PGE2)or two synthetic agonists and comparing with PGE2-EP2-Gs structures, we found that unique primary sequences of prostaglandin E2 receptor (EP) receptors and distinct conformational states of the EP4 ligand pocket govern the Gs/Gi transducer coupling selectivity through different structural propagation paths, especially via TM6 and TM7, to generate selective cytoplasmic structural features. In particular, the orientation of the PGE2 ω-chain and two distinct pockets encompassing agonist L902688 of EP4 were differentiated by their Gs/Gi coupling ability. Further, we identified common and distinct features of cytoplasmic side of EP receptors for Gs/Gi coupling and provide a structural basis for selective and biased agonist design of EP4 with therapeutic potential.


Asunto(s)
Dinoprostona , Transducción de Señal , Dinoprostona/metabolismo , Transducción de Señal/fisiología , Receptores de Prostaglandina/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Hormonas , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo
2.
Acta Pharmacol Sin ; 41(5): 670-677, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31804606

RESUMEN

Renal fibrosis is considered as the pathway of almost all kinds of chronic kidney diseases (CKD) to the end stage of renal diseases (ESRD). Ganoderic acid (GA) is a group of lanostane triterpenes isolated from Ganoderma lucidum, which has shown a variety of pharmacological activities. In this study we investigated whether GA exerted antirenal fibrosis effect in a unilateral ureteral obstruction (UUO) mouse model. After UUO surgery, the mice were treated with GA (3.125, 12.5, and 50 mg· kg-1 ·d-1, ip) for 7 or 14 days. Then the mice were sacrificed for collecting blood and kidneys. We showed that GA treatment dose-dependently attenuated UUO-induced tubular injury and renal fibrosis; GA (50 mg· kg-1 ·d-1) significantly ameliorated renal disfunction during fibrosis progression. We further revealed that GA treatment inhibited the extracellular matrix (ECM) deposition in the kidney by suppressing the expression of fibronectin, mainly through hindering the over activation of TGF-ß/Smad signaling. On the other hand, GA treatment significantly decreased the expression of mesenchymal cell markers alpha-smooth muscle actin (α-SMA) and vimentin, and upregulated E-cadherin expression in the kidney, suggesting the suppression of tubular epithelial-mesenchymal transition (EMT) partially via inhibiting both TGF-ß/Smad and MAPK (ERK, JNK, p38) signaling pathways. The inhibitory effects of GA on TGF-ß/Smad and MAPK signaling pathways were confirmed in TGF-ß1-stimulated HK-2 cell model. GA-A, a GA monomer, was identified as a potent inhibitor on renal fibrosis in vitro. These data demonstrate that GA or GA-A might be developed as a potential therapeutic agent in the treatment of renal fibrosis.


Asunto(s)
Proteínas Smad/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Triterpenos/farmacología , Obstrucción Ureteral/tratamiento farmacológico , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Inyecciones Intraperitoneales , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Triterpenos/administración & dosificación , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/cirugía
3.
Anal Chem ; 91(23): 14936-14942, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31670502

RESUMEN

Förster resonance energy transfer (FRET) is a well-established method for studying macromolecular interactions and conformational changes within proteins. Such a method normally uses fluorescent proteins or chemical-labeling methods which are often only accessible to surface-exposed residues and risk-disturbing target protein structures. Here, we demonstrate that the genetic incorporation of a synthetic fluorescent amino acid, L-(7-hydroxycoumarin-4-yl) ethylglycine (Cou) and natural endogenous fluorophore Tryptophan (Trp) residues of a protein could serve as an efficient FRET pair to monitor protein interactions, using the signaling transducer ß-arrestin-1 as a model system. We used this technology to record the dynamic spectra in both binding and competition experiments of ß-arrestin-1, the contribution of each specific phosphate in ternary complex formation, in a rapid and efficient manner. The determined Kd value for the association between the active arrestin and Fab30 is 0.68 µM in the three-component interaction system. Moreover, we were able to determine the contributions of the site 3 phospho-site and the site 6 phospho-site binding, each contributing to the high affinity ternary complex assembly as 2.7 fold and 15.5 fold, respectively, which were never determined before. These results thus highlighted the potential usage of this new method in measurement of the allosteric-induced enhanced affinity with small amount proteins and in a fast manner and in a complex system. Collectively, our newly developed Trp:Cou FRET system based on genetic expansion technology has extended the molecular toolboxes available for biochemical and structural biology studies.


Asunto(s)
Aminoácidos/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Ingeniería de Proteínas/métodos , Sitios de Unión , Glicina/análogos & derivados , Glicina/química , Glicina/genética , Unión Proteica , Triptófano/química , Umbeliferonas/química , beta-Arrestina 1
4.
Diabetes ; 71(7): 1454-1471, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35472681

RESUMEN

Long-chain fatty acids (LCFAs) are not only energy sources but also serve as signaling molecules. GPR120, an LCFA receptor, plays key roles in maintaining metabolic homeostasis. However, whether endogenous ligand-GPR120 circuits exist and how such circuits function in pancreatic islets are unclear. Here, we found that endogenous GPR120 activity in pancreatic δ-cells modulated islet functions. At least two unsaturated LCFAs, oleic acid (OA) and linoleic acid (LA), were identified as GPR120 agonists within pancreatic islets. These two LCFAs promoted insulin secretion by inhibiting somatostatin secretion and showed bias activation of GPR120 in a model system. Compared with OA, LA exerted higher potency in promoting insulin secretion, which is dependent on ß-arrestin2 function. Moreover, GPR120 signaling was impaired in the diabetic db/db model, and replenishing OA and LA improved islet function in both the db/db and streptozotocin-treated diabetic models. Consistently, the administration of LA improved glucose metabolism in db/db mice. Collectively, our results reveal that endogenous LCFA-GPR120 circuits exist and modulate homeostasis in pancreatic islets. The contributions of phenotype differences caused by different LCFA-GPR120 circuits within islets highlight the roles of fine-tuned ligand-receptor signaling networks in maintaining islet homeostasis.


Asunto(s)
Diabetes Mellitus , Islotes Pancreáticos , Animales , Diabetes Mellitus/metabolismo , Ácidos Grasos/metabolismo , Homeostasis , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/metabolismo
5.
Nat Commun ; 12(1): 2396, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888704

RESUMEN

Arrestins recognize different receptor phosphorylation patterns and convert this information to selective arrestin functions to expand the functional diversity of the G protein-coupled receptor (GPCR) superfamilies. However, the principles governing arrestin-phospho-receptor interactions, as well as the contribution of each single phospho-interaction to selective arrestin structural and functional states, are undefined. Here, we determined the crystal structures of arrestin2 in complex with four different phosphopeptides derived from the vasopressin receptor-2 (V2R) C-tail. A comparison of these four crystal structures with previously solved Arrestin2 structures demonstrated that a single phospho-interaction change results in measurable conformational changes at remote sites in the complex. This conformational bias introduced by specific phosphorylation patterns was further inspected by FRET and 1H NMR spectrum analysis facilitated via genetic code expansion. Moreover, an interdependent phospho-binding mechanism of phospho-receptor-arrestin interactions between different phospho-interaction sites was unexpectedly revealed. Taken together, our results provide evidence showing that phospho-interaction changes at different arrestin sites can elicit changes in affinity and structural states at remote sites, which correlate with selective arrestin functions.


Asunto(s)
Receptores de Vasopresinas/metabolismo , beta-Arrestina 1/metabolismo , Cristalografía por Rayos X , Células HEK293 , Humanos , Mutación , Resonancia Magnética Nuclear Biomolecular , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosforilación , Conformación Proteica en Hélice alfa , Dominios Proteicos/genética , Receptores de Vasopresinas/química , Receptores de Vasopresinas/ultraestructura , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , beta-Arrestina 1/genética , beta-Arrestina 1/aislamiento & purificación , beta-Arrestina 1/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA