Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(36): e202406637, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38880766

RESUMEN

A critical challenge in solid polymer lithium batteries is developing a polymer matrix that can harmonize ionic transportation, electrochemical stability, and mechanical durability. We introduce a novel polymer matrix design by deciphering the structure-function relationships of polymer side chains. Leveraging the molecular orbital-polarity-spatial freedom design strategy, a high ion-conductive hyperelastic ternary copolymer electrolyte (CPE) is synthesized, incorporating three functionalized side chains of poly-2,2,2-Trifluoroethyl acrylate (PTFEA), poly(vinylene carbonate) (PVC), and polyethylene glycol monomethyl ether acrylate (PEGMEA). It is revealed that fluorine-rich side chain (PTFEA) contributes to improved stability and interfacial compatibility; the highly polar side chain (PVC) facilitates the efficient dissociation and migration of ions; the flexible side chain (PEGMEA) with high spatial freedom promotes segmental motion and interchain ion exchanges. The resulting CPE demonstrates an ionic conductivity of 2.19×10-3 S cm-1 (30 °C), oxidation resistance voltage of 4.97 V, excellent elasticity (2700 %), and non-flammability. The outer elastic CPE and the inner organic-inorganic hybrid SEI buffer intense volume fluctuation and enable uniform Li+ deposition. As a result, symmetric Li cells realize a high CCD of 2.55 mA cm-2 and the CPE-based Li||NCM811 full cell exhibits a high-capacity retention (~90 %, 0.5 C) after 200 cycles.

2.
Angew Chem Int Ed Engl ; : e202414209, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384542

RESUMEN

Photoelectrochemical water splitting offers a promising approach for carbon neutrality, but its commercial prospects are still hampered by a lack of efficient and stable photoelectrodes with earth-abundant materials. Here, we report a strategy to construct an efficient photoanode with a coaxial nanobelt structure, comprising a buried-ZrS3/ZrOS n-p junction, for photoelectrochemical water splitting. The p-type ZrOS layer, formed on the surface of the n-type ZrS3 nanobelt through a pulsed-ozone-treatment method, acts as a hole collection layer for hole extraction and a protective layer to shield the photoanode from photocorrosion. The resulting ZrS3/ZrOS photoanode exhibits light harvesting with good photo-to-current efficiencies across the whole visible region to over 650 nm. By further employing NiOOH/FeOOH as the oxygen evolution reaction cocatalyst, the ZrS3/ZrOS/NiOOH/FeOOH photoanode yields a photocurrent density of ~9.3 mA cm-2 at 1.23 V versus the reversible hydrogen electrode with an applied bias photon-to-current efficiency of ~3.2 % under simulated sunlight irradiation in an alkaline solution (pH=13.6). The conformal ZrOS layer enables ZrS3/ZrOS/NiOOH/FeOOH photoanode operation over 1000 hours in an alkaline solution without obvious performance degradation. This study, offering a promising approach to fabricate efficient and durable photoelectrodes with earth-abundant materials, advances the frontiers of photoelectrochemical water splitting.

3.
Nanomicro Lett ; 16(1): 141, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436814

RESUMEN

An anion-rich electric double layer (EDL) region is favorable for fabricating an inorganic-rich solid-electrolyte interphase (SEI) towards stable lithium metal anode in ester electrolyte. Herein, cetyltrimethylammonium bromide (CTAB), a cationic surfactant, is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating. In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO3-/FSI- anions in the EDL region due to the positively charged CTA+. In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI, which helps improve the kinetics of Li+ transfer, lower the charge transfer activation energy, and homogenize Li deposition. As a result, the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm-2 with a capacity of 1 mAh cm-2. Moreover, Li||LiFePO4 and Li||LiCoO2 with a high cathode mass loading of > 10 mg cm-2 can be stably cycled over 180 cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA