Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Arch Virol ; 164(4): 1111-1119, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30790106

RESUMEN

H5 avian influenza virus (AIV) and velogenic Newcastle disease virus (v-NDV) are pathogens listed in the OIE Terrestrial Animal Health Code and are considered key pathogens to be eliminated in poultry production. Molecular techniques for rapid detection of H5 AIV and v-NDV are required to investigate their transmission characteristics and to guide prevention. Traditional virus isolation, using embryonated chicken eggs, is time-consuming and cannot be used as a rapid diagnostic technology. In this study, a multiplex real-time RT-PCR (RRT-PCR) detection method for six H5 AIV clades, three v-NDV subtypes, and one mesogenic NDV subtype was successfully established. The detection limit of our multiplex NDV and H5 AIV RRT-PCR was five copies per reaction for each pathogen, with good linearity and efficiency (y = -3.194x + 38.427 for H5 AIV and y = -3.32x + 38.042 for NDV). Multiplex PCR showed good intra- and inter-assay reproducibility, with coefficient of variance (CV) less than 1%. Furthermore, using the RRT-PCR method, H5 AIV and NDV detection rates in clinical samples were higher overall than those obtained using the traditional virus isolation method. Therefore, our method provides a promising technique for surveillance of various H5 AIV clades and multiple velogenic and mesogenic NDV subtypes in live-poultry markets.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Reacción en Cadena de la Polimerasa Multiplex/métodos , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Enfermedades de las Aves de Corral/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Pollos , Patos , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/clasificación , Subtipo H5N2 del Virus de la Influenza A/genética , Gripe Aviar/diagnóstico , Enfermedad de Newcastle/diagnóstico , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/genética , Enfermedades de las Aves de Corral/diagnóstico , Sensibilidad y Especificidad
2.
Virology ; 535: 218-226, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31325836

RESUMEN

Genotype S H9N2 viruses frequently donate their internal genes to facilitate the generation of novel influenza viruses, e.g., H5N6, H7N9, and H10N8, which have caused human infection. Genotype S was originated from the replacement of F/98-like M and PB2 genes of the genotype H with those from G1-like lineage. However, whether this gene substitution will influence the viral fitness of emerging influenza viruses remains unclear. We found that H5Nx and H7N9 viruses with G1-like PB2 or M gene exhibited higher virulence and replication than those with F/98-like PB2 or M in chickens. We also determined the functional significance of G1-like PB2 in conferring increased polymerase activity and improved nucleus transportation efficiency, and facilitated RNP nuclear export by G1-like M. Our results suggest that G1-like PB2 and M genes optimize viral fitness, and thus play a crucial role in the genesis of emerging influenza viruses that cause rising prevalence in chickens.


Asunto(s)
Aptitud Genética , Virus de la Influenza A/crecimiento & desarrollo , ARN Polimerasa Dependiente del ARN/metabolismo , Virus Reordenados/crecimiento & desarrollo , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/metabolismo , Animales , Pollos , Virus de la Influenza A/genética , Gripe Aviar/virología , ARN Polimerasa Dependiente del ARN/genética , Virus Reordenados/genética , Proteínas de la Matriz Viral/genética , Proteínas Virales/genética , Virulencia
3.
Vet Microbiol ; 219: 200-211, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29778197

RESUMEN

Clade 2.3.4.4 of H5N6 subtype Avian Influenza Viruses (AIVs) has become dominant clade in South-East Asia. So far, a total of 16 cases of human infection, including 6 deaths, have been confirmed since 2014. In this study, we systematically investigated the genetic evolution and biological characteristics of these viruses. We first carried out phylogenetic and statistical analysis of all H5N6 viruses that were downloaded from Influenza Research Database, GISAID and isolates from our lab. We found that H5N6 AIVs continued to reassort with other AIVs subtypes since 2014. Among these H5N6 reassortments, four main gene types were identified: A (internal genes of H5N1-origin), B (PB2 of H6-origin, and others of H5N1-origin), C (internal genes of H9-origin) and D (PB2 of H6-origin and PB1of H3-origin, and others of H5N1). In addition, after several years of evolution, gene type D is currently the dominant gene type. To systematically compare the genetic and evolutionary characteristics and pathogenicity of these viruses, four H5N6 AIVs of different gene types were selected for further analysis. S4, XZ6, GD1602 and YZ587 virus represented gene type A, B, C and D, respectively. Their NA genes were all originated from H6 and their whole genome showed a high similarity with human isolates. All these isolates could both bind with SA-α2,3 Gal and SA-α2,6 Gal receptors. Pathogenicity test showed that these viruses were highly pathogenic in chickens, while YZ587 showed the lowest virulence. Moreover, XZ6 and S4 viruses were highly pathogenic in ducks and moderately pathogenic in mice, while GD1602 and YZ587 viruses were no-pathogenic in these animals. Interestingly, GD1602 and YZ587-like viruses were responsible for 4 and 2 human infection cases in 2016, respectively. Therefore, our study showed that the YZ587 virus which has mixed internal genes, showed lower virulence in avian species and mammals compared to other genotype viruses. Overall, our findings suggest that the H5N6 avian influenza virus is undergoing constantly evolving and reassortment. Thus, our study highlights the necessary of continued surveillance of the H5N6 AIVs in birds and paying close attention to the spread of these novel reassortment viruses.


Asunto(s)
Evolución Molecular , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Animales , Pollos/virología , Patos/virología , Genoma Viral , Genotipo , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Gripe Aviar/epidemiología , Gripe Humana/virología , Ratones , Filogenia , Virus Reordenados/clasificación
4.
Genome Announc ; 5(48)2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192070

RESUMEN

H3 subtype avian influenza virus (AIV) poses a great threat to public health, and so investigating its epidemiology is of great importance. A novel reassortant H3N2 AIV strain was isolated from a live poultry market in eastern China. The strain's genes originated from H1N1, H3, and H7 AIVs. Thus, the genome information of the H3N2 isolate will help to investigate further the epidemiology of H3 subtype AIVs in China.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA