Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Org Biomol Chem ; 22(8): 1639-1645, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38180439

RESUMEN

Sialic acid (SA) is a naturally occurring monosaccharide found in glycoproteins and glycolipids. Changes in the expression of SA are associated with several diseases; thus, the detection of SA is of great significance for biological research, cancer diagnosis, and treatment. Boronic acid analogs have emerged as a promising tool for detecting sugars such as SA due to its reversible covalent bonding ability. In this study, 11 bis-boronic acid compounds and 2 mono-boronic acid compounds were synthesized via a highly efficient Ugi-4CR strategy. The synthesized compounds were subjected to affinity fluorescence binding experiments to evaluate their binding capability to SA. Compound A1 was shown to have a promising binding constant of 2602 ± 100 M-1 at pH = 6.0. Density Functional Theory (DFT) calculations examining the binding modes between A1 and SA indicated that the position of the boronic acid functional group was strongly correlated with its interaction with SA's α-hydroxy acid unit. The DFT calculations were consistent with the observations from the fluorescence experiments, demonstrating that the number and relative positions of the boronic acid functional groups are critical factors in enhancing the binding affinity to SA. DFT calculations of both S and R configuration of A1 indicated that the effect of the S/R configuration of A1 on its binding with ß-sialic acid was insignificant as the Ugi-4CR generated racemic products. A fluorine atom was incorporated into the R2 substituent of A1 as an electron-withdrawing group to produce A5, which possessed a significantly higher capability to bind to SA (Keq = 7015 ± 5 M-1 at pH = 6.0). Finally, A1 and A5 were shown to possess exceptional binding selectivity toward ß-sialic acid under pH of 6.0 and 6.5 while preferring to bind with glucose, fructose, and galactose under pH of 7.0 and 7.5.


Asunto(s)
Ácidos Borónicos , Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Ácidos Borónicos/química , Monosacáridos , Glucosa , Galactosa
2.
Small ; 19(44): e2302973, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37377256

RESUMEN

Rechargeable zinc aqueous batteries are key alternatives for replacing toxic, flammable, and expensive lithium-ion batteries in grid energy storage systems. However, these systems possess critical weaknesses, including the short electrochemical stability window of water and intrinsic fast zinc dendrite growth. Hydrogel electrolytes provide a possible solution, especially cross-linked zwitterionic polymers that possess strong water retention ability and high ionic conductivity. Herein, an in situ prepared fiberglass-incorporated dual-ion zwitterionic hydrogel electrolyte with an ionic conductivity of 24.32 mS cm-1 , electrochemical stability window up to 2.56 V, and high thermal stability is presented. By incorporating this hydrogel electrolyte of zinc and lithium triflate salts, a zinc//LiMn0.6 Fe0.4 PO4 pouch cell delivers a reversible capacity of 130 mAh g-1 in the range of 1.0-2.2 V at 0.1C, and the test at 2C provides an initial capacity of 82.4 mAh g-1 with 71.8% capacity retention after 1000 cycles with a coulombic efficiency of 97%. Additionally, the pouch cell is fire resistant and remains safe after cutting and piercing.

3.
Phys Chem Chem Phys ; 23(21): 12270-12279, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34013930

RESUMEN

To develop a high-performance methane storage material, an understanding of the mechanism and electronic interactions between methane and the material is essential. In this study, we performed detailed theoretical analyses to investigate the methane storage capacity of Ni-MOF-74 using a large-scale periodic DFT code CONQUEST. In a single pore of the unit cell, we considered three possible sites, iSBU, L, and P sites, where iSBU is the inorganic secondary building unit with a metal center, and L is the linker consisting of the organic building unit, while the P site is the vacuum site in the center of the pore. It shows that the methane molecule adsorption possesses the largest methane molecule adsorption energy on the iSBU site. Our calculations indicate that both C-HO and weak agostic interactions exist between the methane molecule and the iSBU site. The adsorption energy of one methane molecule on the iSBU site is in good agreement with previous experimental and theoretical studies. The calculation of the stepwise methane molecule adsorption shows that the first six methane molecules can first occupy the iSBU sites via C-HO and weak agostic interactions. The second six methane molecules are adsorbed on the remaining L sites, where the C-Hπ interaction becomes important, leading to the synergistic effect together with the C-HO interaction to enhance the adsorption energy of the methane molecule. Finally, it can adsorb up to sixteen CH4 molecules in a single pore of a unit cell at Ni-MOF-74. Moreover, we conducted DOS and EDD analyses, which clearly show that the interactions play a vital role in the adsorption of a methane molecule on Ni-MOF-74, especially the C-HO interaction.

4.
J Comput Chem ; 41(3): 194-202, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31618481

RESUMEN

Methane conversion by using transition metal catalysts plays in an important role in various usages of the industrial process. The mechanism of methane conversion on B, N-co-doped graphene supported Ir and Pt clusters, BNG-Ir4 and BNG-Pt4, have been investigated using density functional theory calculations. Methane was found to adsorb on BNG-Ir4 and BNG-Pt4 clusters via strong agostic interactions. The first step of methane dehydrogenation on BNG-Ir4 has a lower energy barrier, indicating a facile methane dissociation on BNG-Ir4. In addition, it shows that hydrogen molecule can form on the BNG-Ir4 and hydrogen can desorb from the surface. Besides, the C-C coupling reaction of CH3 to form ethane is a more thermodynamically favorable process than CH3 dehydrogenation on BNG-Ir4. Further, ethane is easier to desorb from the surface due to its low desorption energy. Therefore, the BNG-Ir4 cluster is a potential catalyst for activating methane to form ethane and to produce hydrogen. © 2019 Wiley Periodicals, Inc.

5.
Phys Chem Chem Phys ; 22(45): 26410-26418, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33179644

RESUMEN

The iodide/triiodide interaction with the dye on a semiconductor surface plays a significant role in understanding the dye-sensitized solar cells (DSSCs) mechanism and improving its efficiency. In the present study, density functional theory (DFT) calculations were used to determine the interaction between the complexed iodide redox couple with dye/TiO2 for the relevance of DSSCs. Three new metal-free organic dyes noted as D1Y, D2Y and D3Y, featured with D-π-A configuration were designed by varying functional groups on the donor moiety. We analyzed the structural and electronic properties of these dyes when standing alone and being adsorbed on the oxide surface with the iodide electrolyte. Of the designed dyes, the incorporation of a strong donor unit in D1Y and D2Y sensitizers in conjunction with iodide electrolytes on the TiO2 surface provides better adsorption and electronic properties in comparison to those from the dye alone on the TiO2 surface. Analysis of density of states (DOS) indicates that the introduction of a strong electron-donating group into the organic dye, mainly D1Y and D2Y with an iodide electrolyte on the surface remarkably upshifts the Fermi energy, thereby improving the efficiency of the DSSCs by an increase of the open-circuit voltage (Voc). The present finding constitutes the basis for achieving a deeper understanding of the intrinsic interaction taking place at the electrolyte/dye/TiO2 interface and provides us with directions for the design of efficient dyes and redox electrolytes for improving DSSCs.

6.
Phys Chem Chem Phys ; 22(10): 5693-5701, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32103216

RESUMEN

An understanding of the interaction of water with perovskite is crucial in improving the structural stability of the perovskite. Hence, in this study, the structural and electronic properties of the γ-CsPbI3(220) perovskite surface upon the adsorption of water molecules have been investigated based on density functional theory calculations. Also, we perform first-principles ab initio molecular dynamics simulations (AIMD) to explore the structural stability of the γ-CsPbI3(220) perovskite surface in the presence of water molecules, and the results are compared with the conventional cubic CH3NH3PbI3(100) perovskite surface. The water molecules show stronger interactions with the (220) surface of γ-CsPbI3 than the (100) surface of CH3NH3PbI3. However, AIMD results demonstrate that the former is much more stable, and no trace of surface degradation was observed upon the adsorption of water molecules.

7.
Phys Chem Chem Phys ; 20(37): 24201-24209, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30209447

RESUMEN

Temperature-programmed desorption (TPD) is one of the most straightforward surface science experiments for the determination of the thermodynamic and kinetic parameters of a reaction. In our previous study (J. Phys. Chem. C, 2013, 117, 6136-6142), we proposed a model combining DFT methods with microkinetics to investigate the TPD spectra of NH3 and H2O on the RuO2(110) surface. Although our model predicted both the physisorption and chemisorption peaks of both adsorbates in agreement with the experimental TPD spectra, it failed to explain the region between the physisorption and chemisorption areas and underestimated the intensity of the adsorbate in these areas. Hence, to improve our model, in this study, we considered the diffusion of adsorbates from the sub-monolayer to the second layer. Accordingly, we simulated the TPD spectra of both NH3 and H2O on the RuO2(110) surface using condensation approximation. Our results indicate that the diffusion barriers of the adsorbates at high coverage are smaller than their direct desorption energies. Hence, the diffusion of the adsorbates to the second layer from the sub-monolayer at higher coverage is kinetically favorable, which then desorb directly even at low temperatures. Furthermore, the simulated TPD spectra clearly depict the previous experimental results of both adsorbates after considering the diffusion.

8.
Phys Chem Chem Phys ; 20(36): 23564-23577, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30187074

RESUMEN

This theoretical study on dye-sensitized solar cells (DSSCs) includes design strategies for dye donor units to improve the efficiency of DSSCs, and further illuminates the organic dye regeneration mechanism. We have designed a series of new organic sensitizers based on a D-D-π-A architecture to exhibit easy electron transfer and to have remarkable light harvesting properties in the visible region by density functional theory (DFT) and time-dependent (TD)-DFT calculations. Furthermore, the interaction of the organic sensitizers with the conventional redox electrolyte using the triiodide/iodide couple (I3-/I-) is investigated. Our calculations indicate that incorporation of strong electron-donating groups remarkably improves the charge transfer characteristics, optoelectronic properties and rapid dye regeneration as compared to less electron donating substituents. In addition, our study demonstrates the possibility of second electron injection from the oxidized dye complex to the semiconductor surface, which further confirms our recently proposed dye regeneration mechanism.


Asunto(s)
Suministros de Energía Eléctrica , Colorantes Fluorescentes/química , Teoría Cuántica , Energía Solar , Electrones , Oxidación-Reducción , Semiconductores , Propiedades de Superficie
9.
Phys Chem Chem Phys ; 20(14): 9355-9363, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29564450

RESUMEN

The decomposition of methanol is currently attracting research attention due to the potential widespread applications of its end products. In this work, density functional theory (DFT) calculations have been performed to investigate the adsorption and decomposition of methanol on a Ru-Pt/boron doped graphene surface. We find that the most favorable reaction pathway is methanol (CH3OH) decomposition through O-H bond breaking to form methoxide (CH3O) as the initial step, followed by further dehydrogenation steps which generate formaldehyde (CH2O), formyl (CHO), and carbon monoxide (CO). The calculations illustrate that CH3OH and CO groups prefer to adsorb at the Ru-top sites, while CH2OH, CH3O, CH2O, CHO, and H2 groups favor the Ru-Pt bridge sites, indicating the preference of Ru atoms to adsorb the active intermediates or species having lone-pair electrons. Based on the results, it is found that the energy barrier for CH3OH decomposition through the initial O-H bond breaking is less than its desorption energy of 0.95 eV, showing that CH3OH prefers to undergo decomposition to CH3O rather than direct desorption. The study provides in-depth theoretical insights into the potentially enhanced catalytic activity of Ru-Pt/boron doped graphene surfaces for methanol decomposition reactions, thereby contributing to the understanding and designing of an efficient catalyst under optimum conditions.

10.
Phys Chem Chem Phys ; 19(48): 32536-32543, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29188831

RESUMEN

Spin filtering materials are of great current interest in part due to their applications in molecular electronics. In this study, we carried out a theoretical investigation on the charge transport properties of transition metal (TM) dithiolene complexes with TM = Ni, Fe and Mn by using non-equilibrium Green's function/density functional theory (NEGF-DFT) methods. The characteristics of current-voltage and spin-resolved transmission spectra pointed out that Ni complexes are non-polarized, while Fe and Mn complexes exhibit high polarization and can be regarded as excellent candidates for spin-filtering materials with high spin-filtering efficiency. These differences were rationalized on the basis of electron delocalization over the molecular junction of the partial distribution of α- and ß-spin molecular projected self-consistent Hamiltonian (MPSH) orbitals, and also the first eigenchannels of molecular junctions.

11.
Phys Chem Chem Phys ; 18(2): 1071-81, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26661584

RESUMEN

We have designed a new set of D-π-A type organic dye sensitizers with different acceptor and anchoring groups, and systematically investigated their optoelectronic properties for efficient dye sensitized solar cell applications. Particularly, we have focused on the effects of anchoring groups on the dye aggregation phenomenon. TDDFT results indicate that the dyes with CSSH anchoring groups exhibit improved optoelectronic properties compared to other dyes. Further, molecular dynamics simulations have been performed to describe the formation of dye aggregation due to intermolecular hydrogen bonding. The observed results indicate that dyes with CSSH anchoring groups are less prone to aggregate because of their very weak intermolecular interactions.

12.
Phys Chem Chem Phys ; 17(33): 21143-8, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25436937

RESUMEN

The pressure-dependent interactions between the ionic liquid mixture ([MPI][I1.5]) and nano-TiO2 surfaces have been studied up to 2.5 GPa. The results of infrared spectroscopic profiles of [MPI][I1.5] and [MPI][I1.5]-nano-TiO2 indicated that no appreciable changes in the C-H stretching bands with the addition of nano-TiO2 were observed under ambient pressure. As the pressure was elevated to 0.7 GPa, the C-H stretching absorption of [MPI][I1.5] underwent band-narrowing and red-shifts in frequency. In contrast to the results of [MPI][I1.5], the spectra of [MPI][I1.5]-nano-TiO2 do not show dramatic changes under high pressures. A possible explanation for this observation is the formation of certain pressure-enhanced C-H···nano-TiO2 interactions around the imidazolium C-H and alkyl C-H groups. As imidazolium C-H···I(-) is replaced by the weaker imidazolium C-H···polyiodide, the splitting of the imidazolium C-H stretching bands was observed. The experimental results indicate that both nano-TiO2 and polyiodides are capable of disturbing the self-assembly of ionic liquids. This study suggests the possibility to tune the efficiency of dye-sensitized solar cells via a high pressure method.

13.
J Comput Aided Mol Des ; 28(5): 565-75, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24743972

RESUMEN

The development of ruthenium dye-sensitizers with highly effective metal-to-ligand charge transfer (MLCT) characteristics and narrowed transition energy gaps are essential for the new generation of dye-sensitized solar cells. Here, we designed a novel anchoring ligand by inserting the cyanovinyl-branches inside the anchoring ligands of selected highly efficient dye-sensitizers and studied their intrinsic optical properties using theoretical methods. Our calculated results show that the designed ruthenium dyes provide good performances as sensitizers compared to the selected efficient dyes, because of their red-shift in the UV-visible absorption spectra with an increase in the absorption intensity, smaller energy gaps and thereby enhancing MLCT transitions. We found that, the designed anchoring ligand acts as an efficient "electron-acceptor" which boosts electron-transfer from a -NCS ligand to this ligand via a Ru-bridge, thus providing a way to lower the transition energy gap and enhance the MLCT transitions.


Asunto(s)
Colorantes/química , Metales/química , Modelos Teóricos , Rutenio/química , Energía Solar , Ligandos , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta
14.
Phys Chem Chem Phys ; 16(29): 15389-99, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24946111

RESUMEN

A series of organic sensitizers based on different configurations such as D-π-A, D-[π]n-A, D-π-[A]n, [D]n-π-A, D-π-A-π-D, D-π-[A]n-π-D and D-[π-A]n-π-D (where n = 1-4) are designed using theoretical methods. The effects of repeating π-linker, donor-acceptor moieties and the substitution of additional donor-acceptor moieties on the optoelectronic properties have been addressed. Our results show that the strength of the acceptor units changes the mono band absorption into dual band absorption in all the considered strategies. We found that repeating π-linker/donor moieties in the D-π-A series enhances the intensity of the absorption and can tune their absorption spectra from UV-to-visible and visible to near IR regions by repeating acceptor units. Also, the present results indicate that the D-π-A-π-D configuration shows improved optical properties than the conventional D-π-A structure. This theoretical study explores the new configurations and design strategies of organic dyes for developing efficient light harvesting devices working in the whole visible and near IR regions.

15.
J Mater Chem A Mater ; 12(15): 9184-9199, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38633215

RESUMEN

A limiting factor for solid polymer electrolyte (SPE)-based Li-batteries is the functionality of the electrolyte decomposition layer that is spontaneously formed at the Li metal anode. A deeper understanding of this layer will facilitate its improvement. This study investigates three SPEs - polyethylene oxide:lithium tetrafluoroborate (PEO:LiBF4), polyethylene oxide:lithium bis(oxalate)borate (PEO:LiBOB), and polyethylene oxide:lithium difluoro(oxalato)borate (PEO:LiDFOB) - using a combination of electrochemical impedance spectroscopy (EIS), galvanostatic cycling, in situ Li deposition photoelectron spectroscopy (PES), and ab initio molecular dynamics (AIMD) simulations. Through this combination, the cell performance of PEO:LiDFOB can be connected to the initial SPE decomposition at the anode interface. It is found that PEO:LiDFOB had the highest capacity retention, which is correlated to having the least decomposition at the interface. This indicates that the lower SPE decomposition at the interface still creates a more effective decomposition layer, which is capable of preventing further electrolyte decomposition. Moreover, the PES results indicate formation of polyethylene in the SEI in cells based on PEO electrolytes. This is supported by AIMD that shows a polyethylene formation pathway through free-radical polymerization of ethylene.

16.
Inorg Chem ; 52(7): 3962-8, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23514197

RESUMEN

A unique spatial arrangement of amide groups for CO2 adsorption is found in the open-ended channels of a zinc(II)-organic framework {[Zn4(BDC)4(BPDA)4]·5DMF·3H2O}n (1, BDC = 1,4-benzyl dicarboxylate, BPDA = N,N'-bis(4-pyridinyl)-1,4-benzenedicarboxamide). Compound 1 consists of 4(4)-sql [Zn4(BDC)4] sheets that are further pillared by a long linker of BPDA and forms a 3D porous framework with an α-Po 4(12)·6(3) topology. Remarkably, the unsheltered amide groups in 1 provide a positive cooperative effect on the adsorption of CO2 molecules, as shown by the significant increase in the CO2 adsorption enthalpy with increasing CO2 uptake. At ambient condition, a 1:1 ratio of active amide sites to CO2 molecules was observed. In addition, compound 1 favors capture of CO2 over N2. DFT calculations provided rationale for the intriguing 1:1 ratio of amide sorption sites to CO2 molecules and revealed that the nanochamber of compound 1 permits the slipped-parallel arrangement of CO2 molecules, an arrangement found in crystal and gas-phase CO2 dimer.

17.
Phys Chem Chem Phys ; 15(30): 12734-41, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23793294

RESUMEN

The interactions between Ammoeng 100 and water are probed using high-pressure infrared measurements and DFT-calculations. The results of infrared absorption profiles suggest that the energetically favored approach for water molecules to interact with Ammoeng 100 is via the formation of anion-water interactions, whereas the alkyl C-H groups play much less important roles. After comparison with pure Ammoeng 100, it appears that no appreciable changes in band frequencies of alkyl C-H vibrations occurred as Ammoeng 100 was mixed with D2O. The presence of D2O has a red-shift effect on the peak frequency of the S=O stretching vibration under the pressures below 1 GPa in comparison to the absorption frequencies of pure Ammoeng 100. This observation is likely related to local structures of the S=O groups interacting with D2O molecules. DFT-calculations indicate that the most energetically favored conformation of ion pairs should be the species having only one hydrophilic hydrogen bonding. The results of calculations reveal that water addition may induce the partial replacement of C-H···O interactions with strong hydrogen bonding between anions and water molecules.

18.
J Phys Chem A ; 117(33): 7959-69, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23875958

RESUMEN

This paper reports an in-depth mechanistic study on the oxidative decomposition of propylene carbonate in the presence of lithium salts (LiClO4, LiBF4, LiPF6, and LiAsF6) with the aid of density functional theory calculations at the B3LYP/6-311++G(d,p) level of theory. The solvent effect is accounted for by using the implicit solvation model with density method. Moreover, the rate constants for the decompositions of propylene carbonate have been investigated by using transition-state theory. The shortening of the original carbonyl C-O bond and a lengthening of the adjacent ethereal C-O bonds of propylene carbonate, which occurs as a result of oxidation, leads to the formation of acetone radical and CO2 as a primary oxidative decomposition product. The termination of the primary radical generates polycarbonate, acetone, diketone, 2-(ethan-1-ylium-1-yl)-4-methyl-1,3-dioxolan-4-ylium, and CO2. The thermodynamic and kinetic data show that the major oxidative decomposition products of propylene carbonate are independent of the type of lithium salt. However, the decomposition rate constants of propylene carbonate are highly affected by the lithium salt type. On the basis of the rate constant calculations using transition-state theory, the order of gas volume generation is: [PC-ClO4](-) > [PC-BF4](-) > [PC-AsF6](-) > [PC-PF6](-).

19.
J Colloid Interface Sci ; 649: 804-814, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37390528

RESUMEN

Improving the quality of the solid-electrolyte interphase (SEI) layer is highly imperative to stabilize the Li-metal anodes for the practical application of high-energy-density batteries. However, controllably managing the formation of robust SEI layers on the anode is challenging in state-of-the-art electrolytes. Herein, we discuss the role of dual additives fluoroethylene carbonate (FEC) and lithium difluorophosphate (LiPO2F2, LiPF) within the commercial electrolyte mixture (LiPF6/EC/DEC) considering their reactivity with Li metal anodes using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Synergistic effects of dual additives on SEI formation mechanisms are explored systematically by invoking different electrolyte mixtures including pure electrolyte (LP47), mono-additive (LP47/FEC and LP47/LiPF), and dual additives (LP47/FEC/LiPF). The present work suggests that the addition of dual additives accelerates the reduction of salt and additives while increasing the formation of a LiF-rich SEI layer. In addition, calculated atomic charges are applied to predict the representative F1s X-ray photoelectron (XPS) signal, and our results agree well with the experimentally identified SEI components. The nature of carbon and oxygen-containing groups resulting from the electrolyte decompositions at the anode surface is also analyzed. We find that the presence of dual additives inhibits undesirable solvent degradation in the respective mixtures, which effectively restricts the hazardous side products at the electrolyte-anode interface and improves SEI layer quality.

20.
Sci Rep ; 13(1): 9060, 2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37271770

RESUMEN

Elucidating the complex degradation pathways and formed decomposition products of the electrolytes in Li-metal batteries remains challenging. So far, computational studies have been dominated by studying the reactions at inert Li-metal surfaces. In contrast, this study combines DFT and AIMD calculations to explore the Li-nucleation process for studying interfacial reactions during Li-plating by introducing Li-atoms close to the metal surface. These Li-atoms were added into the PEO polymer electrolytes in three stages to simulate the spontaneous reactions. It is found that the highly reactive Li-atoms added during the simulated nucleation contribute to PEO decomposition, and the resulting SEI components in this calculation include lithium alkoxide, ethylene, and lithium ethylene complexes. Meanwhile, the analysis of atomic charge provides a reliable guideline for XPS spectrum fitting in these complicated multicomponent systems. This work gives new insights into the Li-nucleation process, and experimental XPS data supporting this computational strategy. The AIMD/DFT approach combined with surface XPS spectra can thus help efficiently screen potential polymer materials for solid-state battery polymer electrolytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA