Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 588
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 629(8012): 679-687, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693266

RESUMEN

Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.


Asunto(s)
Heterogeneidad Genética , Genómica , Imagenología Tridimensional , Neoplasias Pancreáticas , Lesiones Precancerosas , Análisis de la Célula Individual , Adulto , Femenino , Humanos , Masculino , Células Clonales/metabolismo , Células Clonales/patología , Secuenciación del Exoma , Aprendizaje Automático , Mutación , Páncreas/anatomía & histología , Páncreas/citología , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Flujo de Trabajo , Progresión de la Enfermedad , Detección Precoz del Cáncer , Oncogenes/genética
2.
BMC Genomics ; 25(1): 593, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867153

RESUMEN

BACKGROUND: Terpenes are important components of plant aromas, and terpene synthases (TPSs) are the key enzymes driving terpene diversification. In this study, we characterized the volatile terpenes in five different Chrysanthemum nankingense tissues. In addition, genome-wide identification and expression analysis of TPS genes was conducted utilizing an improved chromosome-scale genome assembly and tissue-specific transcriptomes. The biochemical functions of three representative TPSs were also investigated. RESULTS: We identified tissue-specific volatile organic compound (VOC) and volatile terpene profiles. The improved Chrysanthemum nankingense genome assembly was high-quality, including a larger assembled size (3.26 Gb) and a better contig N50 length (3.18 Mb) compared to the old version. A total of 140 CnTPS genes were identified, with the majority representing the TPS-a and TPS-b subfamilies. The chromosomal distribution of these TPS genes was uneven, and 26 genes were included in biosynthetic gene clusters. Closely-related Chrysanthemum taxa were also found to contain diverse TPS genes, and the expression profiles of most CnTPSs were tissue-specific. The three investigated CnTPS enzymes exhibited versatile activities, suggesting multifunctionality. CONCLUSIONS: We systematically characterized the structure and diversity of TPS genes across the Chrysanthemum nankingense genome, as well as the potential biochemical functions of representative genes. Our results provide a basis for future studies of terpene biosynthesis in chrysanthemums, as well as for the breeding of improved chrysanthemum varieties.


Asunto(s)
Transferasas Alquil y Aril , Chrysanthemum , Genoma de Planta , Familia de Multigenes , Terpenos , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Chrysanthemum/genética , Chrysanthemum/enzimología , Terpenos/metabolismo , Filogenia , Compuestos Orgánicos Volátiles/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
3.
Br J Cancer ; 131(1): 184-195, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762674

RESUMEN

BACKGROUND: Immune checkpoint blockade (ICB) therapy provides remarkable clinical benefits for multiple cancer types. However, the overall response rate to ICB therapy remains low in esophageal squamous cell carcinoma (ESCC). This study aimed to identify biomarkers of ICB therapy for ESCC and interrogate its potential clinical relevance. METHODS: We investigated gene expression in 42 treatment-naïve ESCC tumor tissues and identified differentially expressed genes, tumor-infiltrating lymphocytes and immune-related genes signatures associated with differential immunotherapy responses. We systematically assessed the tumor microenvironment using the NanoString GeoMx digital spatial profiler, single-cell RNA-seq and multiplex immunohistochemistry in ESCC. Finally, we evaluated the associations between HLA-A-positive tertiary lymphoid structures (TLSs) and patients' responses to ICB in 60 ESCC patients. RESULTS: Tumor infiltrating B lymphocytes and several immune-related gene signatures, such as the antigen presenting machinery (APM) signature, are significantly elevated in ICB treatment responders. Multiplex immunohistochemistry identified the presence of HLA-A+ TLSs and showed that TLS-resident cells increasingly express HLA-A as TLSs mature. Most TLS-resident HLA-A+ cells are tumor-infiltrating T (TIL-T) or tumor-infiltrating B (TIL-B) lymphocytes. Digital spatial profiling of spatially distinct TIL-T lymphocytes and single-cell RNA-seq data from 60 ESCC tumor tissues revealed that CXCL13-expressing exhausted TIL-Ts inside TLSs are reactivated with elevated expression of the APM signature as TLSs mature. Finally, we demonstrated that HLA-A+ TLSs and their major cellular components, TIL-Ts and TIL-Bs, are associated with a clinical benefit from ICB treatment for ESCC. CONCLUSIONS: HLA-A+ TLSs are present in ESCC tumor tissues. TLS-resident TIL-Ts with elevated expression of the APM signature may be reactivated. HLA-A+ TLSs and their major cellular components, TIL-Ts and TIL-Bs, may serve as biomarkers for ICB-treated ESCC patients.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Antígenos HLA-A , Inmunoterapia , Linfocitos Infiltrantes de Tumor , Estructuras Linfoides Terciarias , Microambiente Tumoral , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Carcinoma de Células Escamosas de Esófago/inmunología , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/terapia , Carcinoma de Células Escamosas de Esófago/genética , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Antígenos HLA-A/inmunología , Antígenos HLA-A/genética , Femenino , Masculino , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Persona de Mediana Edad , Anciano , Biomarcadores de Tumor/metabolismo
4.
Anal Chem ; 96(29): 11853-11861, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38989993

RESUMEN

Cardiac myosin-binding protein C (cMyBP-C) is a novel cardiac marker of acute myocardial infarction (AMI) and acute cardiac injuries (ACI). Construction of point-of-care testing techniques capable of sensing cMyBP-C with high sensitivity and precision is urgently needed. Herein, we synthesized an Au@NGQDs@Au/Ag multi-shell nanoUrchins (MSNUs), and then applied it in a colorimetric/SERS dual-mode immunoassay for detection of cMyBP-C. The MSNUs displayed superior stability, colorimetric brightness, and SERS enhancement ability with an enhanced factor of 5.4 × 109, which were beneficial to improve the detection capability of test strips. The developed MSNU-based test strips can achieve an ultrasensitive immunochromatographic assay of cMyBP-C in both colorimetric and SERS modes with the limits of detection as low as 19.3 and 0.77 pg/mL, respectively. Strikingly, this strip was successfully applied to analyze actual plasma samples with significantly better sensitivity, negative predictive value, and accuracy than commercially available gold test strips. Notably, this method possessed a wide range of application scenarios via combining with a color recognizer application named Color Grab on the smartphone, which can meet various needs of different users. Overall, our MSNU-based test strip as a mobile health monitoring tool shows excellent sensitivity, reproducibility, and rapid detection of the cMyBP-C, which holds great potential for the early clinic diagnosis of AMI and ACI.


Asunto(s)
Proteínas Portadoras , Oro , Humanos , Inmunoensayo/métodos , Proteínas Portadoras/sangre , Oro/química , Límite de Detección , Colorimetría/métodos , Nanopartículas del Metal/química , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/sangre , Espectrometría Raman/métodos
5.
J Transl Med ; 22(1): 97, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263066

RESUMEN

Atherosclerosis is a chronic, progressive, inflammatory disease that occurs in the arterial wall. Despite recent advancements in treatment aimed at improving efficacy and prolonging survival, atherosclerosis remains largely incurable. In this review, we discuss emerging single-cell sequencing techniques and their novel insights into atherosclerosis. We provide examples of single-cell profiling studies that reveal phenotypic characteristics of atherosclerosis plaques, blood, liver, and the intestinal tract. Additionally, we highlight the potential clinical applications of single-cell analysis and propose that combining this approach with other techniques can facilitate early diagnosis and treatment, leading to more accurate medical interventions.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Medicina de Precisión , Arterias , Hígado
6.
J Biochem Mol Toxicol ; 38(1): e23610, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38091339

RESUMEN

Although epidemiological studies have evaluated the association between ambient air pollution and chronic kidney disease (CKD), the results remain mixed. To clarify the nature of the association, we conducted a comprehensive systematic review and meta-analysis to assess the global relationship between air pollution and CKD. The Web of Science, PubMed, Embase and Cochrane Library databases systematically were searched for studies published up to July 2023 and included 32 studies that met specific criteria. The random effects model was used to derive overall risk estimates for each pollutant. The meta-analysis estimated odds ratio (ORs) of risk for CKD were 1.42 (95% confidence interval [CI]: 1.31-1.54) for each 10 µg/m3 increase in PM2.5 ; 1.20 (95% CI: 1.14-1.26) for each 10 µg/m3 increase in PM10 ; 1.07 (95% CI: 1.05-1.09) for each 10 µg/m3 increase in NO2 ; 1.03 (95% CI: 1.02-1.03) for each 10 µg/m3 increase in NOX ; 1.07 (95% CI: 1.01-1.12) for each 1 ppb increase in SO2 ; 1.03 (95% CI: 1.00-1.05) for each 0.1 ppm increase in CO. Subgroup analysis showed that this effect varied by gender ratio, age, study design, exposure assessment method, and income level. Furthermore, PM2.5 , PM10 , and NO2 had negative effects on CKD even within the World Health Organization-recommended acceptable concentrations. Our results further confirmed the adverse effect of air pollution on the risk of CKD. These findings can contribute to enhance the awareness of the importance of reducing air pollution among public health officials and policymakers.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Insuficiencia Renal Crónica , Humanos , Contaminantes Atmosféricos/efectos adversos , Material Particulado/efectos adversos , Dióxido de Nitrógeno/análisis , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/inducido químicamente
7.
BMC Anesthesiol ; 24(1): 77, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408913

RESUMEN

BACKGROUND: Extensive metastatic and refractory cancer pain is common, and exhibits a dissatisfactory response to the conventional intrathecal infusion of opioid analgesics. CASE PRESENTATION: The present study reports a case of an extensive metastatic esophageal cancer patient with severe intractable pain, who underwent translumbar subarachnoid puncture with intrathecal catheterization to the prepontine cistern. After continuous infusion of low-dose morphine, the pain was well-controlled with a decrease in the numeric rating scale (NRS) of pain score from 9 to 0, and the few adverse reactions to the treatment disappeared at a low dose of morphine. CONCLUSIONS: The patient achieved a good quality of life during the one-month follow-up period.


Asunto(s)
Dolor en Cáncer , Neoplasias , Dolor Intratable , Humanos , Morfina , Dolor Intratable/etiología , Dolor Intratable/inducido químicamente , Dolor en Cáncer/tratamiento farmacológico , Calidad de Vida , Analgésicos Opioides , Inyecciones Espinales/efectos adversos
8.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 34-43, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38151998

RESUMEN

Cisplatin resistance is a major obstacle in the treatment of non-small cell lung cancer (NSCLC). p32 and OPA1 are the key regulators of mitochondrial morphology and function. This study aims to investigate the role of the p32/OPA1 axis in cisplatin resistance in NSCLC and its underlying mechanism. The levels of p32 protein and mitochondrial fusion protein OPA1 are higher in cisplatin-resistant A549/DDP cells than in cisplatin-sensitive A549 cells, which facilitates mitochondrial fusion in A549/DDP cells. In addition, the expression of p32 and OPA1 protein is also upregulated in A549 cells during the development of cisplatin resistance. Moreover, p32 knockdown effectively downregulates the expression of OPA1, stimulates mitochondrial fission, decreases ATP generation and sensitizes A549/DDP cells to cisplatin-induced apoptosis. Furthermore, metformin significantly downregulates the expressions of p32 and OPA1 and induces mitochondrial fission and a decrease in ATP level in A549/DDP cells. The co-administration of metformin and cisplatin shows a significantly greater decrease in A549/DDP cell viability than cisplatin treatment alone. Moreover, D-erythro-Sphingosine, a potent p32 kinase activator, counteracts the metformin-induced downregulation of OPA1 and mitochondrial fission in A549/DDP cells. Taken together, these findings indicate that p32/OPA1 axis-mediated mitochondrial dynamics contributes to the acquired cisplatin resistance in NSCLC and that metformin resensitizes NSCLC to cisplatin, suggesting that targeting p32 and mitochondrial dynamics is an effective strategy for the prevention of cisplatin resistance.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Metformina , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Cisplatino/farmacología , Cisplatino/uso terapéutico , Dinámicas Mitocondriales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Resistencia a Antineoplásicos , Línea Celular Tumoral , Apoptosis , Células A549 , Proteínas , Metformina/farmacología , Adenosina Trifosfato , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular , GTP Fosfohidrolasas/genética
9.
Ecotoxicol Environ Saf ; 276: 116318, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626609

RESUMEN

Perfluorooctane sulfonate (PFOS), an officially listed persistent organic pollutant, is a widely distributed perfluoroalkyl substance. Epidemiological studies have shown that PFOS is intimately linked to the occurrence of insulin resistance (IR). However, the detailed mechanism remains obscure. In previous studies, we found that mitochondrial calcium overload was concerned with hepatic IR induced by PFOS. In this study, we found that PFOS exposure noticeably raised lysosomal calcium in L-02 hepatocytes from 0.5 h. In the PFOS-cultured L-02 cells, inhibiting autophagy alleviated lysosomal calcium overload. Inhibition of mitochondrial calcium uptake aggravated the accumulation of lysosomal calcium, while inhibition of lysosomal calcium outflowing reversed PFOS-induced mitochondrial calcium overload and IR. Transient receptor potential mucolipin 1 (TRPML1), the calcium output channel of lysosomes, interacted with voltage-dependent anion channel 1 (VDAC1), the calcium intake channel of mitochondria, in the PFOS-cultured cells. Moreover, we found that ATP synthase F1 subunit beta (ATP5B) interacted with TRPML1 and VDAC1 in the L-02 cells and the liver of mice under PFOS exposure. Inhibiting ATP5B expression or restraining the ATP5B on the plasma membrane reduced the interplay between TRPML1 and VDAC1, reversed the mitochondrial calcium overload and deteriorated the lysosomal calcium accumulation in the PFOS-cultured cells. Our research unveils the molecular regulation of the calcium crosstalk between lysosomes and mitochondria, and explains PFOS-induced IR in the context of activated autophagy.


Asunto(s)
Ácidos Alcanesulfónicos , Autofagia , Calcio , Fluorocarburos , Resistencia a la Insulina , Hígado , Lisosomas , Mitocondrias , ATPasas de Translocación de Protón Mitocondriales , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Animales , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Autofagia/efectos de los fármacos , Calcio/metabolismo , Ratones , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Masculino , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Línea Celular , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Contaminantes Ambientales/toxicidad , Canales Catiónicos TRPM/metabolismo , Ratones Endogámicos C57BL
10.
Ecotoxicol Environ Saf ; 272: 116076, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38335577

RESUMEN

Cr(VI) is known to be seriously toxic and carcinogenic. Hypoxia-inducible factor-1α (HIF-1α) is a crucial regulator to promote tumor development. In this study, we found that Cr(VI) significantly increased the expression of HIF-1α in A549 cells and in lung of BALB/c mice but not in HELF cells. Treatment with Lificiguat (YC-1), HIF-1α inhibitor, or CoCl2, HIF-1α inducer, could alter Cr(VI)-induced autophagy, glycolysis, and cell growth in A549 cells but not in HELF cells, validating the involvement of HIF-1α in these effects of Cr(VI) in A549 cells. Co-treatments of pcATG4B with YC-1, or siATG4B with CoCl2 demonstrated the role of HIF-1α / autophagy axis in inducing glycolysis and cell growth in A549 cells. In HELF cells, however, only autophagy but not HIF-1α played a role in inducing glycolysis. The protein level of p53 was significantly lower in A549 cells than in HELF cells. RITA, a p53 inducer, attenuated Cr(VI)-induced HIF-1α and LC3-II in A549 cells, suggesting that p53 might be the mechanism underlying the different effects of Cr(VI) on HIF-1α in A549 and HELF cells. Thus, p53-dependent HIF-1α / autophagy-mediated glycolysis plays a role in facilitating Cr(VI)-induced carcinogenesis.


Asunto(s)
Carcinogénesis , Cromo , Cobalto , Proteína p53 Supresora de Tumor , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Autofagia , Movimiento Celular , Glucólisis , Línea Celular Tumoral
11.
Ecotoxicol Environ Saf ; 278: 116435, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38714084

RESUMEN

The compound known as Sodium arsenite (NaAsO2), which is a prevalent type of inorganic arsenic found in the environment, has been strongly associated with liver fibrosis (LF), a key characteristic of nonalcoholic fatty liver disease (NAFLD), which has been demonstrated in our previous study. Our previous research has shown that exposure to NaAsO2 triggers the activation of hepatic stellate cells (HSCs), a crucial event in the development of LF. However, the molecular mechanism is still unknown. N6-methyladenosine (m6A) modification is the most crucial post-transcriptional modification in liver disease. Nevertheless, the precise function of m6A alteration in triggering HSCs and initiating LF caused by NaAsO2 remains unknown. Here, we found that NaAsO2 induced LF and HSCs activation through TGF-ß/Smad signaling, which could be reversed by TGF-ß1 knockdown. Furthermore, NaAsO2 treatment enhanced the m6A modification level both in vivo and in vitro. Significantly, NaAsO2 promoted the specific interaction of METTL14 and IGF2BP2 with TGF-ß1 and enhanced the TGF-ß1 mRNA stability. Notably, NaAsO2-induced TGF-ß/Smad pathway and HSC-t6 cells activation might be avoided by limiting METTL14/IGF2BP2-mediated m6A modification. Our findings showed that the NaAsO2-induced activation of HSCs and LF is made possible by the METTL14/IGF2BP2-mediated m6A methylation of TGF-ß1, which may open up new therapeutic options for LF brought on by environmental hazards.


Asunto(s)
Adenosina , Arsenitos , Células Estrelladas Hepáticas , Cirrosis Hepática , Compuestos de Sodio , Factor de Crecimiento Transformador beta1 , Arsenitos/toxicidad , Células Estrelladas Hepáticas/efectos de los fármacos , Compuestos de Sodio/toxicidad , Cirrosis Hepática/patología , Cirrosis Hepática/inducido químicamente , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Adenosina/análogos & derivados , Metiltransferasas/genética , Metiltransferasas/metabolismo , Masculino , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Transducción de Señal/efectos de los fármacos , Ratones , Humanos , Ratones Endogámicos C57BL
12.
Ecotoxicol Environ Saf ; 280: 116553, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850699

RESUMEN

The incidence of nonalcoholic steatohepatitis (NASH) is related with perfluorooctane sulfonate (PFOS), yet the mechanism remains ill-defined. Mounting evidence suggests that ferroptosis plays a crucial role in the initiation of NASH. In this study, we used mice and human hepatocytes L-02 to investigate the role of ferroptosis in PFOS-induced NASH and the effect and molecular mechanism of PFOS on liver ferroptosis. We found here that PFOS caused NASH in mice, and lipid accumulation and inflammatory response in the L-02 cells. PFOS induced hepatic ferroptosis in vivo and in vitro, as evidenced by the decrease in glutathione peroxidase 4 (GPX4), and the increases in cytosolic iron, acyl-CoA synthetase long-chain family member 4 (ACSL4) and lipid peroxidation. In the PFOS-treated cells, the increases in the inflammatory factors and lipid contents were reversed by ferroptosis inhibitor. PFOS-induced ferroptosis was relieved by autophagy inhibitor. The expression of mitochondrial calcium uniporter (MCU) was accelerated by PFOS, leading to subsequent mitochondrial calcium accumulation, and inhibiting autophagy reversed the increase in MCU. Inhibiting mitochondrial calcium reversed the variations in GPX4 and cytosolic iron, without influencing the change in ACSL4, induced by PFOS. MCU interacted with ACSL4 and the siRNA against MCU reversed the changes in ACSL4,GPX4 and cytosolic iron systemically. This study put forward the involvement of hepatic ferroptosis in PFOS-induced NASH and identified MCU as the mediator of the autophagy-dependent ferroptosis.


Asunto(s)
Ácidos Alcanesulfónicos , Autofagia , Calcio , Coenzima A Ligasas , Ferroptosis , Fluorocarburos , Enfermedad del Hígado Graso no Alcohólico , Ferroptosis/efectos de los fármacos , Fluorocarburos/toxicidad , Animales , Ácidos Alcanesulfónicos/toxicidad , Ratones , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/patología , Autofagia/efectos de los fármacos , Coenzima A Ligasas/metabolismo , Humanos , Calcio/metabolismo , Canales de Calcio/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular , Hepatocitos/efectos de los fármacos
13.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255764

RESUMEN

Inflammatory bowel disease (IBD) is a group of intestinal inflammatory diseases characterized by chronic, recurrent, remitting, or progressive inflammation, which causes the disturbance of the homeostasis between immune cells, such as macrophages, epithelial cells, and microorganisms. Intestinal macrophages (IMs) are the largest population of macrophages in the body, and the abnormal function of IMs is an important cause of IBD. Most IMs come from the replenishment of blood monocytes, while a small part come from embryos and can self-renew. Stimulated by the intestinal inflammatory microenvironment, monocyte-derived IMs can interact with intestinal epithelial cells, intestinal fibroblasts, and intestinal flora, resulting in the increased differentiation of proinflammatory phenotypes and the decreased differentiation of anti-inflammatory phenotypes, releasing a large number of proinflammatory factors and aggravating intestinal inflammation. Based on this mechanism, inhibiting the secretion of IMs' proinflammatory factors and enhancing the differentiation of anti-inflammatory phenotypes can help alleviate intestinal inflammation and promote tissue repair. At present, the clinical medication of IBD mainly includes 5-aminosalicylic acids (5-ASAs), glucocorticoid, immunosuppressants, and TNF-α inhibitors. The general principle of treatment is to control acute attacks, alleviate the condition, reduce recurrence, and prevent complications. Most classical IBD therapies affecting IMs function in a variety of ways, such as inhibiting the inflammatory signaling pathways and inducing IM2-type macrophage differentiation. This review explores the current understanding of the involvement of IMs in the pathogenesis of IBD and their prospects as therapeutic targets.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Monocitos , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/etiología , Macrófagos , Mesalamina , Antiinflamatorios , Inflamación
14.
Adv Skin Wound Care ; 37(3): 148-154, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38393704

RESUMEN

OBJECTIVE: To comprehensively assess the association between operative positioning with intraoperative-acquired pressure injury (IAPI) development. METHODS: This retrospective cohort study included 455 patients who underwent surgery between October 2020 and January 2021. The authors grouped patients by operative positioning into the prone position and nonprone position groups. They used propensity-score matching at a 1:2 ratio to control for preoperative confounders, applied multiple logistic regression models to analyze the effects between positioning and IAPI, and assessed interactions of positioning and intraoperative factors on IAPI. RESULTS: The final enrollment was 92 cases in the prone position group and 181 in the nonprone position group. Multivariable logistic analysis suggested that the prone position had a 2.92 times higher risk of IAPI than the nonprone position (odds ratio, 2.92; 95% CI, 1.13-7.57; P = .026). Subgroup analysis showed a significant multiplicative interaction between positioning and foam dressing on IAPI (P < .05), which was not observed in other intraoperative factors (P > .05). CONCLUSIONS: This study provides evidence that prone operative positioning can increase IAPI risk. Patients in the prone position may particularly benefit from using dressings in Chinese populations. Further large-sample longitudinal studies are required to confirm these findings.


Asunto(s)
Úlcera por Presión , Humanos , Estudios Retrospectivos , Úlcera por Presión/etiología , Posición Prona , Presión , Posicionamiento del Paciente/efectos adversos
15.
Glob Chang Biol ; 29(7): 1984-1997, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36607170

RESUMEN

The contribution of agriculture to the sustainable development goals requires climate-smart and profitable farm innovations. Increasing the ammonia fertilizer applications to meet the global food demands results in high agricultural costs, environmental quality deterioration, and global warming, without a significant increase in crop yield. Here, we reported that a third microbial ammonia oxidation process, complete ammonia oxidation (comammox), is contributing to a significant ammonia fertilizer loss (41.9 ± 4.8%) at the rate of 3.53 ± 0.55 mg N kg-1 day-1 in agricultural soils around the world. The contribution of comammox to ammonia fertilizer loss, occurring mainly in surface agricultural soil profiles (0-0.2 m), was equivalent to that of bacterial ammonia oxidation (48.6 ± 4.5%); both processes were significantly more important than archaeal ammonia oxidation (9.5 ± 3.6%). In contrast, comammox produced less N2 O (0.98 ± 0.44 µg N kg-1 day-1 , 11.7 ± 3.1%), comparable to that produced by archaeal ammonia oxidation (16.4 ± 4.4%) but significantly lower than that of bacterial ammonia oxidation (72.0 ± 5.1%). The efficiency of ammonia conversion to N2 O by comammox (0.02 ± 0.01%) was evidently lower than that of bacterial (0.24 ± 0.06%) and archaeal (0.16 ± 0.04%) ammonia oxidation. The comammox rate increased with increasing soil pH values, which is the only physicochemical characteristic that significantly influenced both comammox bacterial abundance and rates. Ammonia fertilizer loss, dominated by comammox and bacterial ammonia oxidation, was more intense in soils with pH >6.5 than in soils with pH <6.5. Our results revealed that comammox plays a vital role in ammonia fertilizer loss and sustainable development in agroecosystems that have been previously overlooked for a long term.


Asunto(s)
Amoníaco , Suelo , Fertilizantes/análisis , Nitrificación , Oxidación-Reducción , Microbiología del Suelo , Bacterias , Archaea , Agricultura
16.
Chemistry ; 29(1): e202202002, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36161734

RESUMEN

Microbial fuel cell (MFC) is a promising approach that could utilize microorganisms to oxidize biodegradable pollutants in wastewater and generate electrical power simultaneously. Introducing advanced anode nanomaterials is generally considered as an effective way to enhance MFC performance by increasing bacterial adhesion and facilitating extracellular electron transfer (EET). This review focuses on the key advances of recent anode modification materials, as well as the current understanding of the microbial EET process occurring at the bacteria-electrode interface. Based on the difference in combination mode of the exoelectrogens and nanomaterials, anode surface modification, hybrid biofilm construction and single-bacterial surface modification strategies are elucidated exhaustively. The inherent mechanisms may help to break through the performance output bottleneck of MFCs by rational design of EET-related nanomaterials, and lead to the widespread application of microbial electrochemical systems.


Asunto(s)
Fuentes de Energía Bioeléctrica , Nanoestructuras , Fuentes de Energía Bioeléctrica/microbiología , Transporte de Electrón , Nanoestructuras/química , Electricidad , Bacterias/metabolismo , Electrodos
17.
Neurochem Res ; 48(9): 2607-2620, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37126193

RESUMEN

Ischemic stroke (IS), a devastating condition characterized by intracranial artery stenosis and middle cerebral artery occlusion leading to insufficient oxygen supply to the brain, is a major cause of death and physical disability worldwide. Recent research has demonstrated the critical role of circular RNAs (circRNAs), a class of covalently enclosed noncoding RNAs that are widespread in eukaryotic cells, in regulating various physiological and pathophysiological cellular processes, including cell apoptosis, autophagy, synaptic plasticity, and neuroinflammation. In the past few years, circRNAs have attracted extensive attention in the field of IS research. This review summarizes the current understanding of the mechanisms underlying the involvement of circRNAs in IS development. A better understanding of circRNA-mediated pathogenic mechanisms in IS may pave the way for translating circRNA research into clinical practice, ultimately improving the clinical outcomes of IS patients.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , ARN Circular/genética , Accidente Cerebrovascular Isquémico/genética , Encéfalo/patología , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Infarto de la Arteria Cerebral Media/patología , Accidente Cerebrovascular/genética
18.
Mol Cell Biochem ; 478(7): 1519-1531, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36413334

RESUMEN

Triple negative breast cancer (TNBC) is a kind of refractory cancer with poor response to conventional chemotherapy. Recently, the combination of baicalein and doxorubicin was reported to exert a synergistic antitumor effect on breast cancer. However, the underlying mechanism how baicalein sensitizes breast cancer cells to doxorubicin remains to be elucidated. Here, it was found that 20 µM baicalein increased the autophagy markers including the ratio of LC3B II/I, GFP-LC3 punctate aggregates and down-regulation of p62 expression, and up-regulated mitophagy marker PINK1 and Parkin in TNBC MDA-MB-231 cells as well. In contrast, doxorubicin decreased the levels of autophagy markers, and significantly up-regulated CDK1 in MDA-MB-231 cells. Pretreatment with baicalein markedly inhibited the doxorubicin-induced decrease in autophagy markers and up-regulation of CDK1, which was reversed by the autophagy inhibitor 3-Methyladenine. Moreover, baicalein alleviated the doxorubicin-induced expression and phosphorylation (at Ser616) of mitochondrial fission protein Drp1. Intriguingly, the autophagy inhibitor 3-Methyladenine also significantly weakened the effect of baicalein on doxorubicin-induced viability decrease and apoptosis in MDA-MB-231 cells. Taken together, our data indicate that baicalein improves the chemosensitivity of TNBC cells to doxorubicin through promoting the autophagy-mediated down-regulation of CDK1, also suggest a novel strategy for prevention of TNBC in the future.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Células MDA-MB-231 , Regulación hacia Abajo , Línea Celular Tumoral , Doxorrubicina/farmacología , Autofagia , Apoptosis , Proliferación Celular , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/farmacología
19.
Cell Biol Toxicol ; 39(5): 2165-2181, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35226250

RESUMEN

N6-methyladenosine (m6A) messenger RNA methylation is the most widespread gene regulatory mechanism affecting liver functions and disorders. However, the relationship between m6A methylation and arsenic-induced hepatic insulin resistance (IR), which is a critical initiating event in arsenic-induced metabolic syndromes such as type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD), remains unclear. Here, we showed that arsenic treatment facilitated methyltransferase-like 14 (METTL14)-mediated m6A methylation, and that METTL14 interference reversed arsenic-impaired hepatic insulin sensitivity. We previously showed that arsenic-induced NOD-like receptor protein 3 (NLRP3) inflammasome activation contributed to hepatic IR. However, the regulatory mechanisms underlying the role of arsenic toward the post-transcriptional modification of NLRP3 remain unclear. Here, we showed that NLRP3 mRNA stability was enhanced by METTL14-mediated m6A methylation during arsenic-induced hepatic IR. Furthermore, we demonstrated that arsenite methyltransferase (AS3MT), an essential enzyme in arsenic metabolic processes, interacted with NLRP3 to activate the inflammasome, thereby contributing to arsenic-induced hepatic IR. Also, AS3MT strengthened the m6A methylase association with NLRP3 to stabilize m6A-modified NLRP3. In summary, we showed that AS3MT-induced m6A modification critically regulated NLRP3 inflammasome activation during arsenic-induced hepatic IR, and we identified a novel post-transcriptional function of AS3MT in promoting arsenicosis.


Asunto(s)
Arsénico , Resistencia a la Insulina , Humanos , Arsénico/toxicidad , Arsénico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Inflamasomas/metabolismo , Hígado , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR/metabolismo
20.
Aging Clin Exp Res ; 35(10): 2127-2136, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37490260

RESUMEN

AIMS: To construct and validate an intraoperative hypothermia risk prediction model for elderly patients undergoing total hip arthroplasty (THA). METHODS: We collected data from 718 patients undergoing THA in a tertiary hospital from January 2021 to December 2022. Of these patients, 512 were assigned to the modeling group from January 2021 to April 2022, and 206 participants were assigned to the validation group from May 2022 to December 2022. A logistic regression analysis was performed to construct the model. The area under the curve (AUC) was used to test the model's predictive ability. RESULTS: The incidence rate of intraoperative hypothermia was 51.67%. The risk factors entered into the risk prediction model were age, preoperative hemoglobin level, intraoperative blood loss, postoperative hemoglobin level, and postoperative systolic blood pressure. The model was constructed as follows: logit (P) = - 10.118 + 0.174 × age + 1.366 × 1 (preoperative hemoglobin level) + 0.555 × 1 (postoperative hemoglobin level) + 0.009 × 1 (intraoperative blood loss) + 0.066 × 1 (postoperative systolic blood pressure). Using the Hosmer-Lemeshow test, the P value was 0.676 (AUC, 0.867). The Youden index, sensitivity, and specificity were 0.602, 0.790, and 0.812, respectively. The incidence rates of intraoperative hypothermia in the modeling and validation groups were 53.15% and 48.06%, respectively. The correct practical application rate was 89.81%. This model had good application potential. CONCLUSIONS: This risk prediction model has good predictive value and can accurately predict the occurrence of intraoperative hypothermia in patients who undergo THA, which provides reliable guidance for clinical work and has good clinical application value.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Hipotermia , Humanos , Anciano , Hipotermia/epidemiología , Hipotermia/etiología , Artroplastia de Reemplazo de Cadera/efectos adversos , Factores de Riesgo , Incidencia , Hemoglobinas , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA