Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 661: 64-74, 2023 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-37087800

RESUMEN

Myocardial infarction (MI) contributes to an increased risk of incident heart failure and sudden death, but there is still a lack of effective treatment in clinic. Recently, growing evidence has indicated that abnormal expression of microRNAs (miRNAs) plays a crucial role in cardiovascular diseases. In this research, the involvement of miRNA-214-3p in MI was explored. A mouse model of MI was established by ligation of the left anterior descending coronary artery, and primary cultures of neonatal rat cardiomyocytes (NRCMs) were submitted to hypoxic treatment to stimulate cellular injury in vitro. Our results showed that miR-214-3p level was significantly upregulated in the infarcted region of mouse hearts and in NRCMs exposed to hypoxia, accompanying with an obvious elevation of ferroptosis. Inhibition of miR-214-3p by antagomir injection improved cardiac function, decreased infarct size, and attenuated iron accumulation and oxidant stress in myocardial tissues. MiR-214-3p could also promote ferroptosis and cellular impairments in NRCMs, while miR-214-3p inhibitor effectively protected cells from hypoxia. Furthermore, dual luciferase reporter gene assay revealed that malic enzyme 2 (ME2) is a direct target of miR-214-3p. In cardiomyocytes, overexpression of ME2 ameliorated the detrimental effects and excessive ferroptosis induced by miR-214-3p mimic, whereas ME2 depletion compromised the protective role of miR-214-3p inhibitor against hypoxic injury and ferroptosis. These findings suggest that miR-214-3p contributes to enhanced ferroptosis during MI at least partially via suppressing ME2. Inhibition of miR-214-3p may be a new approach for tackling MI.


Asunto(s)
Ferroptosis , MicroARNs , Infarto del Miocardio , Animales , Ratones , Ratas , Apoptosis , Hipoxia/metabolismo , MicroARNs/genética , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo
2.
Oxid Med Cell Longev ; 2022: 1198607, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35993026

RESUMEN

Endothelial cell senescence is the main risk factor contributing to vascular dysfunction and the progression of aging-related cardiovascular diseases. However, the relationship between endothelial cell metabolism and endothelial senescence remains unclear. The present study provides novel insight into fatty acid metabolism in the regulation of endothelial senescence. In the replicative senescence model and H2O2-induced premature senescence model of primary cultured human umbilical vein endothelial cells (HUVECs), fatty acid oxidation (FAO) was suppressed and fatty acid profile was disturbed, accompanied by downregulation of proteins associated with fatty acid uptake and mitochondrial entry, in particular the FAO rate-limiting enzyme carnitine palmitoyl transferase 1A (CPT1A). Impairment of fatty acid metabolism by silencing CPT1A or CPT1A inhibitor etomoxir facilitated the development of endothelial senescence, as implied by the increase of p53, p21, and senescence-associated ß-galactosidase, as well as the decrease of EdU-positive proliferating cells. In the contrary, rescue of FAO by overexpression of CPT1A or supplement of short chain fatty acids (SCFAs) acetate and propionate ameliorated endothelial senescence. In vivo, treatment of acetate for 4 weeks lowered the blood pressure and alleviated the senescence-related phenotypes in aortas of Ang II-infused mice. Mechanistically, fatty acid metabolism regulates endothelial senescence via acetyl-coenzyme A (acetyl-CoA), as implied by the observations that suppression of acetyl-CoA production using the inhibitor of ATP citrate lyase NDI-091143 accelerated senescence of HUVECs and that supplementation of acetyl-CoA prevented H2O2-induced endothelial senescence. Deficiency of acetyl-CoA resulted in alteration of acetylated protein profiles which are associated with cell metabolism and cell cycle. These findings thus suggest that improvement of fatty acid metabolism might ameliorate endothelial senescence-associated cardiovascular diseases.


Asunto(s)
Acetilcoenzima A , Enfermedades Cardiovasculares , Ácidos Grasos , Acetilcoenzima A/metabolismo , Acetilación , Animales , Enfermedades Cardiovasculares/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Senescencia Celular , Ácidos Grasos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Ratones , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA