Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Chemistry ; 29(1): e202202002, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36161734

RESUMEN

Microbial fuel cell (MFC) is a promising approach that could utilize microorganisms to oxidize biodegradable pollutants in wastewater and generate electrical power simultaneously. Introducing advanced anode nanomaterials is generally considered as an effective way to enhance MFC performance by increasing bacterial adhesion and facilitating extracellular electron transfer (EET). This review focuses on the key advances of recent anode modification materials, as well as the current understanding of the microbial EET process occurring at the bacteria-electrode interface. Based on the difference in combination mode of the exoelectrogens and nanomaterials, anode surface modification, hybrid biofilm construction and single-bacterial surface modification strategies are elucidated exhaustively. The inherent mechanisms may help to break through the performance output bottleneck of MFCs by rational design of EET-related nanomaterials, and lead to the widespread application of microbial electrochemical systems.


Asunto(s)
Fuentes de Energía Bioeléctrica , Nanoestructuras , Fuentes de Energía Bioeléctrica/microbiología , Transporte de Electrón , Nanoestructuras/química , Electricidad , Bacterias/metabolismo , Electrodos
2.
Chemistry ; 28(70): e202202317, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36062954

RESUMEN

Microbial electro- and photoelectrochemical CO2 reduction represents an opportunity to tackle the environmental demand for sustainable fuel production. Nanomaterials critically impact the electricity- and solar-driven microbial CO2 reduction processes. This minireview comprehensively summarizes the recent developments in the configuration and design of nanomaterials for enhancement of the bacterial adhesion and extracellular electron transfer (EET) processes, based on the modification technologies of improving chemical stability, electrochemical conductivity, biocompatibility, and surface area. Furthermore, the investigation of incorporating non-photosynthetic microorganisms using advanced light-harvesting nanostructured photoelectrodes for solar-to-chemical conversion, as well as the current understanding of EET mechanisms occurring at photosynthetic semiconductor nanomaterials-bacteria biohybrid interface is detailed. The crucial factors influencing the performance of microbial CO2 reduction systems and future perspectives are discussed to provide guidance for the realization of their large-scale application.


Asunto(s)
Dióxido de Carbono , Nanoestructuras , Transporte de Electrón , Electricidad , Adhesión Bacteriana
3.
JAMA ; 323(16): 1582-1589, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32219428

RESUMEN

Importance: Coronavirus disease 2019 (COVID-19) is a pandemic with no specific therapeutic agents and substantial mortality. It is critical to find new treatments. Objective: To determine whether convalescent plasma transfusion may be beneficial in the treatment of critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Design, Setting, and Participants: Case series of 5 critically ill patients with laboratory-confirmed COVID-19 and acute respiratory distress syndrome (ARDS) who met the following criteria: severe pneumonia with rapid progression and continuously high viral load despite antiviral treatment; Pao2/Fio2 <300; and mechanical ventilation. All 5 were treated with convalescent plasma transfusion. The study was conducted at the infectious disease department, Shenzhen Third People's Hospital in Shenzhen, China, from January 20, 2020, to March 25, 2020; final date of follow-up was March 25, 2020. Clinical outcomes were compared before and after convalescent plasma transfusion. Exposures: Patients received transfusion with convalescent plasma with a SARS-CoV-2-specific antibody (IgG) binding titer greater than 1:1000 (end point dilution titer, by enzyme-linked immunosorbent assay [ELISA]) and a neutralization titer greater than 40 (end point dilution titer) that had been obtained from 5 patients who recovered from COVID-19. Convalescent plasma was administered between 10 and 22 days after admission. Main Outcomes and Measures: Changes of body temperature, Sequential Organ Failure Assessment (SOFA) score (range 0-24, with higher scores indicating more severe illness), Pao2/Fio2, viral load, serum antibody titer, routine blood biochemical index, ARDS, and ventilatory and extracorporeal membrane oxygenation (ECMO) supports before and after convalescent plasma transfusion. Results: All 5 patients (age range, 36-65 years; 2 women) were receiving mechanical ventilation at the time of treatment and all had received antiviral agents and methylprednisolone. Following plasma transfusion, body temperature normalized within 3 days in 4 of 5 patients, the SOFA score decreased, and Pao2/Fio2 increased within 12 days (range, 172-276 before and 284-366 after). Viral loads also decreased and became negative within 12 days after the transfusion, and SARS-CoV-2-specific ELISA and neutralizing antibody titers increased following the transfusion (range, 40-60 before and 80-320 on day 7). ARDS resolved in 4 patients at 12 days after transfusion, and 3 patients were weaned from mechanical ventilation within 2 weeks of treatment. Of the 5 patients, 3 have been discharged from the hospital (length of stay: 53, 51, and 55 days), and 2 are in stable condition at 37 days after transfusion. Conclusions and Relevance: In this preliminary uncontrolled case series of 5 critically ill patients with COVID-19 and ARDS, administration of convalescent plasma containing neutralizing antibody was followed by improvement in their clinical status. The limited sample size and study design preclude a definitive statement about the potential effectiveness of this treatment, and these observations require evaluation in clinical trials.


Asunto(s)
Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Betacoronavirus/inmunología , Infecciones por Coronavirus/terapia , Neumonía Viral/terapia , Síndrome de Dificultad Respiratoria/terapia , Adulto , Anciano , Anticuerpos Antivirales/sangre , Antivirales/uso terapéutico , Donantes de Sangre , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/fisiopatología , Enfermedad Crítica , Femenino , Glucocorticoides/uso terapéutico , Humanos , Inmunización Pasiva , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Metilprednisolona/uso terapéutico , Persona de Mediana Edad , Puntuaciones en la Disfunción de Órganos , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/fisiopatología , SARS-CoV-2 , Sueroterapia para COVID-19
4.
Analyst ; 143(17): 4103-4109, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30039813

RESUMEN

In this study, two slightly different halophilic mixed exoelectrogens were enriched and selected from salt lake soils. The results showed that the selected mixed exoelectrogens ESA from the sample OSA (Xiaochaidan Lake soil) and ESB from the sample OSB (Dachaidan Lake soil), without additional NaCl, produced current densities of 1231.1 and 1050.2 µA cm-2, which were 89.6% and 61.7% higher than the typical exoelectrogen G. sulfurreducens PCA, respectively. ESA and ESB could produce 2.7 and 1.9 times higher currents than that obtained using G. sulfurreducens PCA with an additional 1.5% NaCl, respectively. The community diversity data demonstrated that Proteobacteria was the most abundant phylum, in which Enterobacteriaceae and Rhodocyclaceae were the dominant families for both ESA and ESB. Furthermore, at the genus level, the dominant genera Propionivibrio and Escherichia-Shigella were also shared by both. ESA had higher species diversity compared to ESB.

5.
Materials (Basel) ; 17(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673127

RESUMEN

During the coal mining process in soft rock mines with abundant water, the rock mass undergoes cyclic loading and unloading at low frequencies due to factors such as excavation. To investigate the mechanical characteristics and energy evolution laws of different water-containing rock masses under cyclic disturbance loading, a creep dynamic disturbance impact loading system was employed to conduct cyclic disturbance experiments on various water-containing soft rocks (0.00%, 1.74%, 3.48%, 5.21%, 6.95%, and 8.69%). A comparative analysis was conducted on the patterns of input energy density, elastic energy density, dissipated energy density, and damage variables of different water-containing soft rocks during the disturbance process. The results indicate that under the influence of disturbance loading, the peak strength of specimens, except for fully saturated samples, is generally increased to varying degrees. Weakness effects on the elastic modulus were observed in samples with 6.95% water content and saturated samples, while strengthening effects were observed in others. The input energy density of samples is mostly stored in the form of elastic strain energy within the samples, and different water-containing samples adapt to external loads within the first 100 cycles, with almost identical trends in energy indicators. Damage variables during the disturbance process were calculated using the maximum strain method, revealing the evolution of damage in the samples. From an energy evolution perspective, these experimental results elucidate the fatigue damage characteristics of water-containing rock masses under the influence of disturbance loading.

6.
Shock ; 61(5): 718-727, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517232

RESUMEN

ABSTRACT: Purpose : The objective of this study is to establish a nomogram that correlates optimized Acute Physiology and Chronic Health Evaluation II (APACHE II) score with sepsis-related indicators, aiming to provide a robust model for early prediction of sepsis prognosis in clinical practice and serve as a valuable reference for improved diagnosis and treatment strategies. Methods : This retrospective study extracted sepsis patients meeting the inclusion criteria from the MIMIC-IV database to form the training group. An optimized APACHE II score integrated with relevant indicators was developed using a nomogram for predicting the prognosis of sepsis patients. External validation was conducted using data from the intensive care unit at Lanzhou University Second Hospital. Results : The study enrolled 1805 patients in the training cohort and 203 patients in the validation cohort. A multifactor analysis was conducted to identify factors affecting patient mortality within 28 days, resulting in the development of an optimized score by simplifying evaluation indicators from APACHE II score. The results showed that the optimized score (area under the ROC curve [AUC] = 0.715) had a higher area under receiver operating characteristic curve than Sequential Organ Failure Assessment score (AUC = 0.637) but slightly lower than APACHE II score (AUC = 0.720). Significant indicators identified through multifactor analysis included platelet count, total bilirubin level, albumin level, prothrombin time, activated partial thromboplastin time, mechanical ventilation use and renal replacement therapy use. These seven indicators were combined with optimized score to construct a nomogram based on these seven indicators. The nomogram demonstrated good clinical predictive value in both training cohort (AUC = 0.803) and validation cohort (AUC = 0.750). Calibration curves and decision curve analyses also confirmed its good predictive ability, surpassing the APACHE II score and Sequential Organ Failure Assessment score in identifying high-risk patients. Conclusions : The nomogram was established in this study using the MIMIC-IV database and validated with external data, demonstrating its robust discriminability, calibration, and clinical practicability for predicting 28-day mortality in sepsis patients. These findings aim to provide substantial support for clinicians' decision making.


Asunto(s)
APACHE , Mortalidad Hospitalaria , Nomogramas , Sepsis , Humanos , Sepsis/mortalidad , Sepsis/diagnóstico , Sepsis/sangre , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Pronóstico , Curva ROC , Adulto
7.
Sci Total Environ ; 872: 162154, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36804988

RESUMEN

Valorization of lignocellulosic biomass via anaerobic digestion (AD) is limited by its reluctant structure, leading to a substantial energy remaining in the solid digestate. To mitigate this effect, the integration of AD and pyrolysis has attracted attention in recent years. However, the energy recovery efficiency of this cascading system is still unclear, especially the time node. Herein, a comprehensive evaluation of this integration, using varied AD periods, was conducted, to produce biogas, bio-oil and biochar, and to enhance the energy recovery, from the perspective of energy flow. The result indicated that the accumulative CH4 yields increased from 33.23 to 249.20 mL/g VS as the AD time increased from 3 to 15 days. Pyrolysis of the obtained solid digestate obtained biochar from 28.81 to 35.96 %, while the bio-oil and pyrolysis gas slowly decreased. The highest energy efficiency of 71.9 % with a net energy gain of 2.0 MJ/kg wet biomass was achieved by the coupled system optimization at an AD time of 12 days as suggested by the energy flow analysis. This study provides new insight for the maximal conversion of biomass waste into energy products and provides a new way of recycling it.


Asunto(s)
Biocombustibles , Pirólisis , Anaerobiosis , Biomasa
8.
Materials (Basel) ; 16(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36984088

RESUMEN

Anisotropic discontinuity exists widely in rock masses of mines, tunnels, slopes, water conservancy and hydropower projects. The shear characteristics of bolted anisotropic rock joints are extremely important for the stability design of engineering rock mass. However, few scholars have studied the bolted anisotropic rock joint. The different rock properties on both sides of the rock joint, especially the different rock strengths, will greatly affect the deformation characteristics and failure mode of the rock mass. Based on this, a series of shear tests were carried out on the bolted anisotropic rock joint under different normal stresses, and the characteristics of shear stress-shear displacement curve, shear strength, failure characteristics of the rock joint and deformation characteristics of the bolt are discussed. λ is defined as the strength ratio of upper and lower rock on the structural surface. The results show that the effect of λ on the shear stress-shear displacement curve is not obvious at the pre-fracture stage. The shear stress-shear displacement curve at the pre-breaking stage of the bolt presents a softening stage when the normal stress is equal to 0.5 MPa, tends to be horizontal when the normal stress is equal to 1 MPa and presents a hardening stage when the normal stress is greater than 1 MPa. After the bolt is broken, the shear stress-shear displacement curve presents a stepped-down descent. With the increase in λ, the breaking shear stress of the bolt increases. Elliptic failure occurs on the surface of the bolted anisotropic rock joint, and the length of the major axis of the ellipse decreases with the increase in λ value and normal stress. The bolts with different λ values of anisotropic rock joint show "Z-shaped" tensile bending deformation characteristics after shear fracture, and the horizontal and vertical components of the bolt deformation decrease with the increase in λ value and normal stress. The fracture shear displacement of the bolt increases with the increase in normal stress and decreases with the increase in λ value. The research results are helpful to further understand the shear mechanical characteristics and differences of bolted rock joints and provide a reference for solving the engineering problems of the composite layered rock mass.

9.
Chem Sci ; 14(47): 13629-13660, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38075661

RESUMEN

The massive emission of excess greenhouse gases (mainly CO2) have an irreversible impact on the Earth's ecology. Electrocatalytic CO2 reduction (ECR), a technique that utilizes renewable energy sources to create highly reduced chemicals (e.g. C2H4, C2H5OH), has attracted significant attention in the science community. Cu-based catalysts have emerged as promising candidates for ECR, particularly in producing multi-carbon products that hold substantial value in modern industries. The formation of multi-carbon products involves a range of transient intermediates, the behaviour of which critically influences the reaction pathway and product distribution. Consequently, achieving desirable products necessitates precise regulation of these intermediates. This review explores state-of-the-art designs of Cu-based catalysts, classified into three categories based on the different prospects of the intermediates' modulation: heteroatom doping, morphological structure engineering, and local catalytic environment engineering. These catalyst designs enable efficient multi-carbon generation in ECR by effectively modulating reaction intermediates.

10.
ACS Environ Au ; 3(5): 252-276, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37743954

RESUMEN

With 28-34 times the greenhouse effect of CO2 over a 100-year period, methane is regarded as the second largest contributor to global warming. Reducing methane emissions is a necessary measure to limit global warming to below 1.5 °C. Photocatalytic conversion of methane is a promising approach to alleviate the atmospheric methane concentrations due to its low energy consumption and environmentally friendly characteristics. Meanwhile, this conversion process can produce valuable chemicals and liquid fuels such as CH3OH, CH3CH2OH, C2H6, and C2H4, cutting down the dependence of chemical production on crude oil. However, the development of photocatalysts with a high methane conversion efficiency and product selectivity remains challenging. In this review, we overview recent advances in semiconductor-based photocatalysts for methane conversion and present catalyst design strategies, including morphology control, heteroatom doping, facet engineering, and cocatalysts modification. To gain a comprehensive understanding of photocatalytic methane conversion, the conversion pathways and mechanisms in these systems are analyzed in detail. Moreover, the role of electron scavengers in methane conversion performance is briefly discussed. Subsequently, we summarize the anthropogenic methane emission scenarios on earth and discuss the application potential of photocatalytic methane conversion. Finally, challenges and future directions for photocatalytic methane conversion are presented.

11.
Sci Rep ; 13(1): 22199, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097693

RESUMEN

Marine natural gas hydrate (NGH) is a promising substitutive low-carbon energy resource, whereas NGH-production induced geoengineering concerns remain challenging. Advanced forecast of possible geoengineering risks is the fundamental for eco-friendly NGH exploitation. Reservoir creep deformation is an early symptom of the geoengineering risks. However, whether the creep deformation behaviors of the NGH-bearing strata is predictable remains controversial. In this study, a series of multi-step loading creep test are conducted for sandy gas hydrate bearing sediment (GHBS) samples, during which the ultrasonic responses are recorded simultaneously. The acoustic velocity, compression-to-shear velocity ratio, Poission's ratio, main frequency, and main frequency amplitude are used to characterize creep failures of the GHBS for the first time. Combining analyses of the creep behaviors and acoustic responses yield the following conclusions. Firstly, the long-term strength derived from creeping test is 0.45-0.60 times of the shear strength derived from triaxial shearing. Ignoring the creep effect might underestimate the scale and intensity of possible geoengineering risks during long-term NGH exploitation. Secondly, the acoustic velocity increases gently and then decreases continuously during creeping. Once the accelerated creep appears, the acoustic velocity plummets significantly, together with a sudden decrease in the compression-to-shear velocity ratio, and fluctuations in the main frequency and its amplitude. Furthermore, the main frequency and its amplitude shall fluctuate abruptly prior to the emergence of the accelerated creep. Therefore, we anticipate that the combination of abnormal fluctuations of main frequency and its amplitude can be used as early-warning indicators for possible creep failure of the GHBS. The results might have great significance for in-situ detection and prediction of possible reservoir failure during long-term NGH exploitation.

12.
Front Chem ; 10: 1021358, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36199666

RESUMEN

Four homodinuclear lanthanide complexes, Dy2 (LOEt)2(OAc)4 (1), Tb2 (LOEt)2(OAc)4 (2), Ho2(LOEt)2(OAc)4 (3), and Gd2 (LOEt)2(OAc)4 (4), have been synthesized and characterized based on a tripodal oxygen ligand Na [(η5-C5H5)Co(P(O)(OC2H5)2)3] (NaLOEt). Structural analyses show that the acetate anions bridge two symmetry-related Ln3+ ions in the µ2:η1:η1 and µ2:η1:η2 coordination patterns, and each lanthanide (III) ion owns a twisted square antiprism (SAPR) conformation. Static magnetic measurements reveal the weak intramolecular ferromagnetic interaction between dysprosium (III) ions in 1 and antiferromagnetic Ln3+···Ln3+ couplings in the other three complexes. Through the analysis of the ligand-field effect and magnetic anisotropy axis orientation, the reasons for the lack of dynamic magnetic behavior in 1 were identified.

13.
ACS Omega ; 7(35): 31167-31182, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36092625

RESUMEN

In this paper, we develop a dual-porosity dual-permeability model for binary gas migration to explore the permeability evolution in the matrix and fracture in the process of a gas-water two-phase flow during CO2-enhanced coalbed methane (CO2-ECBM) recovery in coal reservoirs. This mechanistic model accommodates the effects of elastic deformation caused by the effective stress change in the matrix and fracture, the swelling/shrinkage deformation of the matrix caused by adsorption/desorption, the convection and diffusion of gas, and the discharge of water. Specifically, the time-dependent matrix swelling, from initially completely reducing the fracture aperture to finally affecting the coal bulk volume, is considered by the invaded volume fraction involving binary gas intrusion. The model is validated through laboratory data and applied to examine the permeability evolution of CO2-ECBM recovery for 10 000 days. Furthermore, we analyze the sensitivity of some selected initial parameters to capture the key factors affecting CO2-ECBM recovery. Our modeling results show that the permeability evolution can be divided into two stages during the process, where stage I is dominated by effective stress and stage II is dominated by adsorption/desorption. Increasing the injection pressure or initial permeability advances the start of stage II. The decrease in initial water saturation causes the permeability to change more drastically and the time of stage II to appear earlier until a time long enough, after which little effect is seen on the permeability results.

14.
Nanoscale Adv ; 5(1): 124-132, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36605799

RESUMEN

Low efficiency of extracellular electron transfer (EET) is a major bottleneck in developing high-performance microbial fuel cells (MFCs). Herein, we construct Shewanella oneidensis MR-1@Au for the bioanode of MFCs. Through performance recovery experiments of mutants, we proved that abundant Au nanoparticles not only tightly covered the bacteria surface, but were also distributed in the periplasm and cytoplasm, and even embedded in the outer and inner membranes of the cell. These Au nanoparticles could act as electron conduits to enable highly efficient electron transfer between S. oneidensis MR-1 and electrodes. Strikingly, the maximum power density of the S. oneidensis MR-1@Au bioanode reached up to 3749 mW m-2, which was 17.4 times higher than that with the native bacteria, reaching the highest performance yet reported in MFCs using Au or Au-based nanocomposites as the anode. This work elucidates the role of Au nanoparticles in promoting transmembrane and extracellular electron transfer from the perspective of molecular biology and electrochemistry, while alleviating bottlenecks in MFC performances.

15.
J Mater Chem B ; 9(6): 1638-1646, 2021 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-33480952

RESUMEN

Surface modification of exoelectrogens with photoelectric materials is a promising way for achieving photo-assisted microbial fuel cells (MFCs). However, the poor conductivity of most photoelectric materials inevitably hampers the electron transfer inside bacterial biofilms. Herein, by utilizing the electrostatic layer-by-layer assembly strategy, the conductive Au nanoparticles (NPs) and photo-responsive CdS NPs were alternatively modified onto the surface of Escherichia coli for photo-assisted bioanodes in MFCs. The CdS layer was found to protect the bacterial cells from light illumination-induced inactivation. When the CdS layer coexisted with an outer layer of Au NPs, the modification of the CdS layers can generate photocurrent without any loss of biocurrent, because the outer Au layer could serve as a conductive channel for the photoelectron and bioelectron transfer between each bacterium. But the increase of CdS layers failed to further improve the photocurrent, implying that the light was inaccessible to the inner CdS layer. This work brings a universal way to fabricate conductive and photo-responsive bacteria, which would deepen the application of cell-surface modification technology in photo-assisted MFCs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Compuestos de Cadmio/química , Escherichia coli/citología , Oro/química , Nanopartículas/química , Sulfuros/química , Electrodos , Tamaño de la Partícula , Propiedades de Superficie
16.
Materials (Basel) ; 12(16)2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31430932

RESUMEN

In view of the existing problems of stope roadways, which are difficult to maintain under the influence of high ground and mining-induced stresses, the structural characteristics and movement regularities of stopes surrounding rocks were analysed. Through the construction of a three-dimensional mechanical model of the coordination support of a stope, the adaptability index of the support in stope is presented, and its mechanism of operation is expounded. Yielding-resisting sand column (YRSC) sidewall-support technology with satisfactory compressibility and supporting strength was developed. The structure and actual mechanical properties of the YRSC were investigated through laboratory experiments, and the optimum ratio of filling materials was obtained. The good applicability of the load and deformation adaptability index of the three-dimensional coordination support in the stope and YRSC sidewall-support technology were demonstrated in practice at the No. 12306 working face of the Dongda coal mine. It was shown that the designed carrying capacity and compression of the sand columns satisfied the site requirements. The actual stress and deformation of the YRSC exhibited three stages: Slow growth at the initial stage, a large increase in the medium term, and a stable trend at the end. The adaptability index of the three-dimensional coordination support in the stope considers all bearing structure units of the stope as an interconnected whole, and the stability conditions of the stope roadway can be quantitatively described. The supporting effect of the YRSC is remarkable and can be applied to the construction of tunnels, bridge systems and other engineering fields.

17.
Anal Chim Acta ; 1050: 44-50, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30661590

RESUMEN

In this study, both electricity generation capability and biodegradation process of carboxymethyl cellulose (CMC) were investigated using a defined ternary culture of Paenibacillus sp., Klebsiella sp. and Geobacter sulfurreducens as biocatalysts in MFCs. The maximum current density achieved by the ternary culture from CMC was 621 ±â€¯23 µA cm-2 in half-cell experiments and the maximum power density reached to 1146 ±â€¯28 mW m-2 in two-chamber MFCs. Meanwhile, the ternary culture also possessed three times higher CMC degradation capability compared to the pure strain J1. Besides, the key metabolite products, including cellobiose, glucose, acetate, were quantified by high performance liquid chromatography (HPLC) to illustrate the biodegradation process of CMC. The high electricity generation performance mainly resulted from the "division-of-labor" based cooperation and the enhanced extracellular electron transfer caused by the electron shuttle secreted by Klebsiella sp. This study highlighted the synergistic effect of specific community on electricity generation using CMC as carbon source, and laid the foundation for further optimization of more efficient and stable microbial consortia for bioenergy applications.


Asunto(s)
Fuentes de Energía Bioeléctrica , Celulosa/metabolismo , Geobacter/metabolismo , Biocatálisis , Celulosa/química , Electricidad , Geobacter/química , Klebsiella/química , Klebsiella/metabolismo , Paenibacillus/química , Paenibacillus/metabolismo
18.
Biosens Bioelectron ; 90: 264-268, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27918963

RESUMEN

A new facultative anaerobic exoelectrogenic strain LZ-1, belonging to Citrobacter freundii, has been isolated. This strain can produce current densities of 843.9 and 865.6µAcm-2 using citrate or acetate as carbon source in a three-electrode configuration. The electricity generation performance was also analyzed in a dual-chamber MFC system, reaching a maximum power density of 1233mWm-2. In addition to acetate and citrate, other carbon sources such as pyruvate, formate, acetate, citrate and fumarate could also be utilized to produce current by strain LZ-1. Data supports the presence of electroactive c-type cytochromes in C. freundii sp. when grown on ITO electrodes, by linking spectroscopy and electrochemistry in situ. Since facultative strains possess many desirable properties compared to anaerobic strains, strain LZ-1 represents a promising exoelectrogenic species in engineering of biological catalysts for microbial electrochemistry.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Citrobacter freundii/aislamiento & purificación , Citrobacter freundii/metabolismo , Acetatos/metabolismo , Proteínas Bacterianas/metabolismo , Citratos/metabolismo , Citocromos c/metabolismo , Técnicas Electroquímicas , Transporte de Electrón , Espectrofotometría Ultravioleta
20.
Adv Sci (Weinh) ; 2(5): 1500013, 2015 05.
Artículo en Inglés | MEDLINE | ID: mdl-27980935

RESUMEN

An impedimetric sensor for persistent toxic substances, including organic pollutants and toxic inorganic ions is presented. The persistent toxic substances are detected using an ultrasensitive technique that is based on electron-transfer blockage. This depends on the formation of guest-host complexes, hydrogen bonding, or a cyclodextrin (CD)-metal complex (Mm(OH)n-ß-CD) structure between the target pollutants and ß-CD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA