RESUMEN
The Wnt/ß-catenin pathway is critical to maintaining cell fate decisions. Recent study showed that liquid-liquid-phase separation (LLPS) of Axin organized the ß-catenin destruction complex condensates in a normal cellular state. Mutations inactivating the APC gene are found in approximately 80% of all human colorectal cancer (CRC). However, the molecular mechanism of the formation of ß-catenin destruction complex condensates organized by Axin phase separation and how APC mutations impact the condensates are still unclear. Here, we report that the ß-catenin destruction complex, which is constructed by Axin, was assembled condensates via a phase separation process in CRC cells. The key role of wild-type APC is to stabilize destruction complex condensates. Surprisingly, truncated APC did not affect the formation of condensates, and GSK 3ß and CK1α were unsuccessfully recruited, preventing ß-catenin phosphorylation and resulting in accumulation in the cytoplasm of CRCs. Besides, we propose that the phase separation ability of Axin participates in the nucleus translocation of ß-catenin and be incorporated and concentrated into transcriptional condensates, affecting the transcriptional activity of Wnt signaling pathway.
Asunto(s)
Complejo de Señalización de la Axina , beta Catenina , Humanos , Complejo de Señalización de la Axina/genética , Proteína Axina/genética , Proteína Axina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Separación de Fases , Mutación/genética , Vía de Señalización Wnt/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismoRESUMEN
BACKGROUND: Spinocerebellar ataxia 4 (SCA4), characterized in 1996, features adult-onset ataxia, polyneuropathy, and linkage to chromosome 16q22.1; its underlying mutation has remained elusive. OBJECTIVE: To explore the radiological and neuropathological abnormalities in the entire neuroaxis in SCA4 and search for its mutation. METHODS: Three Swedish families with undiagnosed ataxia went through clinical, neurophysiological, and neuroimaging tests, including PET studies and genetic investigations. In four cases, neuropathological assessments of the neuroaxis were performed. Genetic testing included short read whole genome sequencing, short tandem repeat analysis with ExpansionHunter de novo, and long read sequencing. RESULTS: Novel features for SCA4 include dysautonomia, motor neuron affection, and abnormal eye movements. We found evidence of anticipation; neuroimaging demonstrated atrophy in the cerebellum, brainstem, and spinal cord. [18F]FDG-PET demonstrated brain hypometabolism and [11C]Flumazenil-PET reduced binding in several brain lobes, insula, thalamus, hypothalamus, and cerebellum. Moderate to severe loss of Purkinje cells in the cerebellum and of motor neurons in the anterior horns of the spinal cord along with pronounced degeneration of posterior tracts was also found. Intranuclear, mainly neuronal, inclusions positive for p62 and ubiquitin were sparse but widespread in the CNS. This finding prompted assessment for nucleotide expansions. A polyglycine stretch encoding GGC expansions in the last exon of the zink finger homeobox 3 gene was identified segregating with disease and not found in 1000 controls. CONCLUSIONS: SCA4 is a neurodegenerative disease caused by a novel GGC expansion in the coding region of ZFHX3, and its spectrum is expanded to include dysautonomia and neuromuscular manifestations.
Asunto(s)
Proteínas de Homeodominio , Ataxias Espinocerebelosas , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Homeodominio/genética , Linaje , Tomografía de Emisión de Positrones , Disautonomías Primarias/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/diagnóstico por imagen , Suecia , Expansión de Repetición de Trinucleótido/genéticaRESUMEN
The electrocatalytic performance of a Fe65Co10Si12.5B12.5 Fe-based compounds toward alkaline hydrogen evolution reaction (HER) is enhanced by dealloying. The dealloying process produced a large number of nanosheets on the surface of NS-Fe65Co10Si12.5B12.5, which greatly increased the specific surface area of the electrode. When the dealloying time is 3 h, the overpotential of NS-Fe65Co10Si12.5B12.5 is only 175.1 mV at 1.0 M KOH and 10 mA cm-2, while under the same conditions, the overpotential of Fe65Co10Si12.5B12.5 is 215 mV, which is reduced. In addition, dealloying treated electrodes also show better HER performance than un-dealloying treated electrodes. With the increase in Co doping amount, the overpotential of the hydrogen evolution reaction decreases, and the hydrogen evolution activity is the best when the addition amount of Co is 10%. This work not only provides a basic understanding of the relationship between surface activity and the dealloying of HER catalysts, but also paves a new way for doping transition metal elements in Fe-based electrocatalysts working in alkaline media.
RESUMEN
The unstable quality of Polyporus umbellatus sclerotia during cultivation is the key factor affecting the quality and yield of P. umbellatus sclerotia. In order to provide technical support for obtaining superior P. umbellatus by molecular breeding, the genetic transformation system mediated by Agrobacterium tumefaciens was studied in this paper. A. tumefaciens-mediated method was used to investigate the effects of antibiotic concentration, strain type, A. tumefaciens concentration, receptor material, infection time, co-culture time, and screening conditions on the genetic transformation efficiency of P. umbellatus. The transformants were screened and detected by hygromycin resistance marker genes, polymerase chain reaction(PCR) of specific primers, and fluorescence detection methods. The results showed that the A. tumefaciens GV3101 strain could genetically transfer P. umbellatus mycelium cells, and the optimal conditions for infection were as follows: the A. tumefaciens concentration A_(600 nm)= 0.6, P. umbellatus mycelium cells as receptor material, infection time of 30 min, and co-culture time of 3 days. The two-step screening method involving hygromycin of 9 and 13 µg·mL~(-1 )was the best screening condition. The results of hygromycin resistance screening, PCR detection of specific primers, and fluorescence detection showed that the exogenous gene eGFP had been transferred into the P. umbellatus mycelium cells, integrated into the genome, and successfully expressed. Under optimal conditions, the conversion efficiency could be increased to 2.3%, and the genetic transformation period was shortened from more than 90 days to less than 60 days. This study established and optimized the genetic transformation system of P. umbellatus mycelium cells mediated by A. tumefaciens, laying a foundation for the analysis of the molecular mechanism of P. umbellatus during growth and molecular breeding.
Asunto(s)
Agrobacterium tumefaciens , Polyporus , Transformación Genética , Agrobacterium tumefaciens/genética , Polyporus/genéticaRESUMEN
To investigate the influence of the strigolactone inhibitor Tis108 on the growth of Gastrodia elata, this study treated G. elata tuber with Tis108 solution of 10 µmol·L~(-1) and measured the content of endogenous hormone gibberellin(GA) in the tuber. By using reverse transcription-polymerase chain reaction(RT-PCR) technology, the key enzyme GeCYP714A1 gene involved in GA deactivation was cloned. Bioinformatics analysis on the GeCYP714A1 gene was carried out by using ExPASy, SWISS-MODEL, MEGA, etc., and its expression levels in different parts of G. elata were determined. The results showed that after Tis108 treatment, GA content in G. elata tuber was significantly increased, and the transcription level of the GeCYP714A1 gene was significantly decreased. The full length of the coding region of the GeCYP714A1 gene is 1 173 bp, encoding 390 amino acids. The protein has a molecular weight of 44.85 kDa, a theoretical isoelectric point of 9.83, an instability index of 49.20, an aliphatic index of 89.03, and a grand average of hydropathicity of-0.235, classifying it as an unstable, basic, hydrophilic protein, and the GeCYP714A1 protein was localized in the mitochondria, lacking a signal peptide and a transmembrane structure. Phylogenetic tree analysis revealed that GeCYP714A1 was most closely related to the DcCYP714C2(PKU78454.1) protein from Dendrobium candidum, with a sequence identity of 67.25%. The qRT-PCR analysis of the expression patterns of the GeCYP714A1 gene indicated that GeCYP714A1 had the highest transcription level in G. elata tuber, followed by stem and inflorescence. The study represented that Tis108 inhibited the transcription level of GeCYP714A1 involved in GA deactivation in G. elata tuber, thereby increasing the accumulation of GA and affecting the growth of G. elata tuber. These results provided a basis for further studies of strigolactone regulation of GA signal and tuber development in G. elata.
Asunto(s)
Gastrodia , Giberelinas , Proteínas de Plantas , Gastrodia/genética , Gastrodia/química , Giberelinas/farmacología , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lactonas/farmacología , Filogenia , Secuencia de AminoácidosRESUMEN
Process data refers to data recorded in computer-based assessments that reflect the problem-solving processes of participants and provide greater insight into how they solve problems. Action time, namely the amount of time required to complete a state transition, is also included in such data along with actions. In this study, an action-level joint model of action sequences and action time is proposed, in which the sequential response model (SRM) is used as the measurement model for action sequences, and a new log-normal action time model is proposed as the measurement model for action time. The proposed model can be regarded as an extension of the SRM by incorporating action time within the joint-hierarchical modeling framework and as an extension of the conventional item-level joint models in process data analysis. Results of the empirical and simulation studies demonstrated that the model setup was justified, model parameters could be interpreted, parameter estimates were accurate, and taking into account participants' action time further was beneficial for obtaining a deep understanding of participants' behavioral patterns. Overall, the proposed action-level joint model provides an innovative modeling framework for analyzing process data in computer-based assessments from the latent variable modeling perspective.
RESUMEN
Dao-di medicinal materials produced in a specific environment always present excellent appearance and high quality. Because of the unique appearance, Ginseng Radix et Rhizoma is regarded as a paradigm in the research on excellent appearance. This paper systematically summarized the research progress in the genetic and environmental factors influencing the formation of the excellent appearance of Ginseng Radix et Rhizoma, aiming to provide reference for the quality improvement of Ginseng Radix et Rhizoma and the scientific connotation of Dao-di Chinese medicinal materials. The Ginseng Radix et Rhizoma with high quality generally has a robust and long rhizome, a large angle between branch roots, and the simultaneous presence of a robust basal part of rhizome, adventitious roots, rhizome bark with circular wrinkles, and fibrous roots with pearl points. The cultivated and wild Ginseng Radix et Rhizoma have significant differences in the appearance and no significant difference in the population genetic diversity. The differences in the appearance are associated with cell wall modification, transcriptional regulation of genes involved in plant hormone transduction, DNA methylation, and miRNA regulation. The rhizosphere soil microorganisms including Fusarium and Alternaria, as well as the endophytes Trichoderma hamatum and Nectria haematococca, may be the key microorganisms affecting the growth and development of Panax ginseng. Cultivation mode, variety, and root exudates may be the main factors influencing the stability of rhizosphere microbial community. Ginsenosides may be involved in the formation of the excellent appearance. However, most of the available studies focus on the partial or single factors in the formation of Dao-di medicinal materials, ignoring the relationship within the complex ecosystems, which limits the research on the formation mechanism of Dao-di medicinal materials. In the future, the experimental models for the research involving genetic and environmental factors should be established and mutant materials should be developed to clarify the internal relationship between factors and provide scientific support for the research on Dao-di medicinal materials.
Asunto(s)
Microbiota , Panax , Alternaria , Panax/genética , RizomaRESUMEN
Baby Boom(BBM) gene is a key regulatory factor in embryonic development and regeneration, cell proliferation, callus growth, and differentiation promotion. Since the genetic transformation system of Panax quinquefolius is unstable with low efficiency and long period, this study attempted to transfer BBM gene of Zea mays to P. quinquefolius callus by gene gunship to investigate its effect on the callus growth and ginsenoside content, laying a foundation for establishing efficient genetic transformation system of P. quinquefolius. Four transgenic callus of P. quinquefolius with different transformation events were obtained by screening for glufosinate ammonium resistance and molecular identification by PCR. The growth state and growth rate of wild-type and transgenic callus were compared in the same growth period. The content of ginsenoside in transgenic callus was determined by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry(UPLC-MS/MS). The results showed that transgenic callus growth rate was significantly higher than that of wild-type callus. In addition, the content of ginsenoside Rb_1, Rg_1, Ro, and Re was significantly higher than that in wild-type callus. The paper preliminarily proved the function of BBM gene in promoting growth rate and increasing ginsenoside content, which provided a scientific basis to establish a stable and efficient genetic transformation system for Panax plants in the future.
Asunto(s)
Ginsenósidos , Panax , Femenino , Embarazo , Humanos , Panax/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Proliferación CelularRESUMEN
Panax quinquefolium, as a common precious medicinal plant, has complex chemical components and unique pharmacological activities, which can play a healthcare role in the human body. With the deepening of research, the application of P. quinquefolium has become increasingly extensive. This paper summarized the research progress of the saponins isolated and identified from diffe-rent parts of P. quinquefolium, the structural classification and pharmacological activities of the saponins, and the quality control of Panacis Quinquefolii Radix. Further, this paper put forward the urgent problems to be solved in the development of P. quinquefolium. It is hoped to lay a foundation for the further study and provide reference for the research direction of P. quinquefolium.
Asunto(s)
Ginsenósidos , Panax , Plantas Medicinales , Saponinas , Humanos , Panax/química , Plantas Medicinales/química , Control de Calidad , Saponinas/química , Saponinas/farmacologíaRESUMEN
PURPOSE: Current reconstruction strategies for chronic posttraumatic boutonniere deformities have variable outcomes and are prone to complications. This study aimed to describe the clinical outcomes of a Y-shaped tendon graft technique. METHODS: In this retrospective case study, we reviewed the files of 18 patients treated with the Y-shaped tendon graft between January 2010 and January 2017. The technique involves release of the central slip, lateral bands, and transverse retinacular ligaments at the proximal interphalangeal (PIP) joint, total excision of scar tissue in the central slip and at the insertion site, and construction of 3 1.5-mm unicortical holes at the base of the middle phalanx, through which a Y-shaped graft of the palmaris longus is inserted to reconstruct the central slip and stabilize the lateral bands in a dorsal position. Clinical evaluations included measuring the active range of motion in the PIP joint and distal interphalangeal (DIP) joint, grip strength, Souter score, and the Quick Disabilities of the Arm, Shoulder, and Hand (QuickDASH) score. RESULTS: The mean age of patients was 36.1 years, and 12 of the 18 patients were men. The average follow-up period was 23 months (range, 13-38 months). The preoperative PIP joint extension deficit was 48.0° ± 5.0° compared with 10.9° ± 9.3° after surgery. The preoperative DIP joint active flexion was 34.4° ± 8.0° compared with 71.4° ± 8.6° after surgery The outcomes based on the Souter score were 11 excellent, 5 good, and 2 poor. The QuickDASH score was 17.7 ± 6.4 before surgery and 11.2 ± 7.2 after surgery. CONCLUSIONS: The Y-shaped tendon graft can be a useful procedure for the correction of chronic boutonniere deformity; in our patient series, this provided good or excellent results in 16 of 18 patients. TYPE OF STUDY/LEVEL OF EVIDENCE: Therapeutic IV.
Asunto(s)
Deformidades Adquiridas de la Mano , Procedimientos Ortopédicos , Adulto , Articulaciones de los Dedos/cirugía , Deformidades Adquiridas de la Mano/etiología , Deformidades Adquiridas de la Mano/cirugía , Humanos , Masculino , Rango del Movimiento Articular , Estudios Retrospectivos , Tendones/cirugíaRESUMEN
The longevity mechanism of ginseng(Panax ginseng) is related to its strong meristematic ability. In this paper, this study used bioinformatic methods to identify the members of the ginseng TCP gene family in the whole genome and analyzed their sequence characteristics. Then, quantitative real-time fluorescent PCR was performed to analyze the TCP genes containing elements rela-ted to meristem expression in the taproots, fibrous roots, stems, and leaves. According to the data, this study further explored the expression specificity of TCP genes in ginseng tissues, which facilitated the dissection of the longevity mechanism of ginseng. The ginseng TCP members were identified and analyzed using PlantTFDB, ExPASy, MEME, PLANTCARE, TBtools, MEGA and DNAMAN. The results demonstrated that there were 60 TCP gene family members in ginseng, and they could be divided into two classes: Class â and Class â ¡, in which the Class â ¡ possessed two subclasses: CYC-TCP and CIN-TCP. The deduced TCP proteins in ginseng had the length of 128-793 aa, the isoelectric point of 4.49-9.84 and the relative molecular mass of 14.2-89.3 kDa. They all contained the basic helix-loop-helix(bHLH) domain. There are a variety of stress response-related cis-acting elements in the promoter regions of ginseng TCP genes, and PgTCP20-PgTCP24 contained the elements associated with meristematic expression. The transcription levels of PgTCP20-PgTCP24 were high in fibrous roots and leaves, but low in stems, indicating the tissue-specific expression of ginseng TCP genes. The Class â TCP members which contained PgTCP20-PgTCP23, may be important regulators for the growth and development of ginseng roots.
Asunto(s)
Panax , Factores de Transcripción , Biología Computacional , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Panax/genética , Panax/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
INTRODUCTION: The plaques formed by amyloid-ß (Aß) accumulation and neurofibrillary tangles formed by hyper-phosphorylated tau protein are the 2 major pathologies of Alzheimer's disease (AD). Recently, autophagy is considered to be a self-degradation process of preserved cytoplasmic abnormal substances, including Aß and tau. METHODS: α-Screen assay is used to discover a new mammalian target of rapamycin (mTOR) signaling inhibitor, and laser scanning confocal microscopic analysis is used to investigate the autophagy formation. Lastly, ELISA and Western blot assays are used to identify the mTOR signaling inhibitor effect on Aß and tau and the underlying mechanism. RESULTS: In the current study, we discover that dihydrotanshinone I (DTS I), extracted from Radix Salviae, can obviously inhibit mTOR phosphorylation and increase autophagy via increasing AMPK phosphorylation. Further study demonstrates that DTS I increases Aß clearance and decreases Tau phosphorylation through autophagy enhancement involved with AMPK/mTOR pathway. CONCLUSION: Our study indicates that DTS I can increase Aß clearance and decrease Tau phosphorylation via autophagy enhancing involved with AMPK/mTOR pathway, which highlights the therapeutic potential of DTS I for the treatment of AD.
Asunto(s)
Péptidos beta-Amiloides/metabolismo , Autofagia/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Furanos/farmacología , Fenantrenos/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Proteínas tau/metabolismo , Animales , Línea Celular , Humanos , Ratones , Fosforilación/efectos de los fármacos , Extractos Vegetales/farmacología , Quinonas , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
BACKGROUND: Ubinuclein-2 (UBN2) is a nuclear protein that interacts with many transcription factors. The molecular role and mechanism of UBN2 in the development and progression of cancers, including colorectal cancer (CRC), is not well understood. The current study explored the role of UBN2 in the development and progression CRC. METHODS: Oncomine network and The Cancer Genome Atlas (TCGA) database were downloaded and Gene Set Enrichment Analysis (GSEA) was performed to compare the UBN2's expression between normal and tumor tissues, as well as the potential correlation of UBN2 expression with signaling pathways. Immunohistochemistry (IHC), qRT-PCR and Western blotting were performed to determine the expression of UBN2 in CRC tissues or cell lines. In vitro proliferation and invasion assays, and orthotopic mouse metastatic model were used to analyze the effect of UBN2 on the development and progression of CRC. RESULTS: The analysis of UBN2 expression using Oncomine network showed that UBN2 was upregulated in CRC tissues compared to matched adjacent normal intestinal epithelial tissues. IHC, qRT-PCR and Western blotting confirmed that UBN2 expression is higher in CRC tissues compared with matched adjacent normal intestinal epithelial tissues. In addition, analyses of TCGA data revealed that high UBN2 expression was associated with advanced stages of lymph node metastasis, distant metastasis, and short survival time in CRC patients. IHC showed that high UBN2 expression is correlated with advanced stages of CRC. Moreover, UBN2 is highly expressed in the liver metastatic lesions. Furthermore, knockdown of UBN2 inhibited the growth, invasiveness and metastasis of CRC cells via regulation of the Ras/MAPK signaling pathway. CONCLUSION: The current study demonstrates that UBN2 promotes tumor progression in CRC. UBN2 may be used as a promising biomarker for predicting the prognosis of CRC patients.
RESUMEN
Gut microbiota alterations manifest as intermittent hypoxia and fragmented sleep, thereby mimicking obstructive sleep apnea-hypopnea syndrome (OSAHS). Here, we sought to perform the first direct survey of gut microbial dysbiosis over a range of apnea-hypopnea indices (AHI) among patients with OSAHS. We obtained fecal samples from 93 patients with OSAHS [5 < AHI ≤ 15 (n=40), 15 < AHI ≤ 30 (n=23), and AHI ≥ 30 (n=30)] and 20 controls (AHI ≤ 5) and determined the microbiome composition via 16S rRNA pyrosequencing and bioinformatics analysis of variable regions 3-4. We measured fasting levels of homocysteine (HCY), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α). Results revealed gut microbial dysbiosis in several patients with varying severities of OSAHS, reliably separating them from controls with a receiver operating characteristic-area under the curve (ROC-AUC) of 0.789. Functional analysis in the microbiomes of patients revealed alterations; additionally, decreased in short-chain fatty acid (SCFA)-producing bacteria and increased pathogens, accompanied by elevated levels of IL-6. Lactobacillus levels correlated with HCY levels. Stratification analysis revealed that the Ruminococcus enterotype posed the highest risk for patients with OSAHS. Our results show that the presence of an altered microbiome is associated with HCY among OSAHS patients. These changes in the levels of SCFA affect the levels of pathogens that play a pathophysiological role in OSAHS and related metabolic comorbidities.
Asunto(s)
Bacterias/aislamiento & purificación , Microbioma Gastrointestinal , Intestinos/microbiología , Enfermedades Metabólicas/microbiología , Apnea Obstructiva del Sueño/microbiología , Adulto , Biomarcadores/sangre , Estudios de Casos y Controles , Comorbilidad , Disbiosis , Heces/microbiología , Femenino , Homocisteína/sangre , Interacciones Huésped-Patógeno , Humanos , Masculino , Enfermedades Metabólicas/sangre , Enfermedades Metabólicas/diagnóstico , Enfermedades Metabólicas/epidemiología , Persona de Mediana Edad , Apnea Obstructiva del Sueño/sangre , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/epidemiologíaRESUMEN
BACKGROUND: Er-Xian decoction (EXD), a formula of Chinese medicine, is often used to treat menopausal syndrome in China. The aim of the present study was to explore the potential cardioprotective mechanism of EXD against myocardial injury in an ovariectomy-induced menopausal rat model. METHODS: We divided the female Wistar rats into ovariectomy group and sham operation group (SHAM group). The ovariectomized (OVX) rats received treatment of vehicle (OVX group), EXD (EXD group) or 17ß-estradiol (E2 group). After 12-week of treatment, the level of estradiol in serum was detected using an electrochemiluminescence immunoassay, and electrophysiologic changes in myocardial action potentials (AP) were evaluated using intracellular microelectrode technique. Changes in the histopathology of the left ventricle and the ultrastructure of the cardiomyocytes were observed by hematoxylin and eosin (HE) staining and transmission electronmicroscopy to assess myocardial injury. Microarrays were applied for the evaluation of gene expression profiles in ventricular muscle of the OVX and EXD rats. Further pathway analyses of the differential expression genes were carried out using the Kyoto Encyclopedia of Genes and Genomes (KEGG). And real-time quantitative RT-PCR (qRT-PCR) was used for verification of the key findings. RESULTS: The results from electrophysiological and histomorphological observations demonstrated that EXD had a substantial myocardial protective effect. The EXD-treated rats, in comparison with the OVX rats, demonstrated up-regulated expression of 28 genes yet down-regulated expression of 157 genes in the ventricular muscle. The qRT-PCR assay validated all selected differential expression genes. The KEGG pathway analysis showed that the down-regulated genes were relevant to cardiomyopathy and myocardial contractility. EXD could decrease the mRNA expressions of cardiac myosin (Myh7, Myl2) and integrin (Itgb5) in the ventricular myocardium. CONCLUSION: EXD had a protective effect against myocardial injury in OVX rats, and this cardioprotective effect may be associated with modulation of the expression of cardiac myosin or integrin at the mRNA level.
Asunto(s)
Cardiomiopatías , Cardiotónicos/farmacología , Medicamentos Herbarios Chinos/farmacología , Corazón/efectos de los fármacos , Menopausia/metabolismo , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Femenino , Miocardio/química , Miocardio/metabolismo , Miocardio/patología , Tamaño de los Órganos/efectos de los fármacos , Ovariectomía , Ratas , Ratas Wistar , Transcriptoma/efectos de los fármacos , Útero/efectos de los fármacosRESUMEN
BACKGROUND: miRNAs are regarded as molecular biomarkers and therapeutic targets for colorectal cancer (CRC), a series of miRNAs have been proven to involve into CRC carcinogenesis, invasion and metastasis. Aberrant miR-422a expression and its roles have been reported in some cancers. However, the function and underlying mechanism of miR-422a in the progression of CRC remain largely unknown. METHODS: Real-time PCR were used to quantify miR-422a expression in CRC tissues. Both vivo and vitro functional assays showed miR-422a inhibits CRC cell proliferation. Target prediction program (miRBase) and luciferase reporter assays were conducted to confirm the target genes AKT1 and MAPK1 of miR-422a. Specimens from 50 patients with CRC were analyzed for the correlation between the expression of miR-422a and the expression of the target genes AKT1 and MAPK1 by real-time PCR. RESULTS: MiR-422a was downregulated in CRC tissues and cell lines. Ectopic expression of miR-422a inhibited cell proliferation and tumor growth ability; inhibition of endogenous miR-422a, by contrast, promoted cell proliferation and tumor growth ability of CRC cells. MiR-422a directly targets 3'-UTR of the AKT1 and MAPK1, down-regulation of miR-422a led to the activation of Raf/MEK/ERK and PI3K/AKT signaling pathways to promote cell proliferation in CRC. In addition, miR-422a expression was negatively correlated with the expressions of AKT1 and MAPK1 in CRC tissues. CONCLUSION: miR-422a inhibits cell proliferation in colorectal cancer by targeting AKT1 and MAPK1.
RESUMEN
Dietary fat affects appetite and appetite-related peptides in birds and mammals; however, the effect of dietary fat on appetite is still unclear in chickens faced with different energy statuses. Two experiments were conducted to investigate the effects of dietary fat on food intake and hypothalamic neuropeptides in chickens subjected to two feeding states or two diets. In Experiment 1, chickens were fed a high-fat (HF) or low-fat (LF) diet for 35â days, and then subjected to fed (HF-fed, LF-fed) or fasted (HF-fasted, LF-fasted) conditions for 24â h. In Experiment 2, chickens that were fed a HF or LF diet for 35â days were fasted for 24â h and then re-fed with HF (HF-RHF, LF-RHF) or LF (HF-RLF, LF-RLF) diet for 3â h. The results showed that chickens fed a HF diet for 35â days had increased body fat deposition despite decreasing food intake even when the diet was altered during the re-feeding period (P<0.05). LF diet (35â days) promoted agouti-related peptide (AgRP) expression compared with HF diet (P<0.05) under both fed and fasted conditions. LF-RHF chickens had lower neuropeptide Y (NPY) expression compared with LF-RLF chickens; conversely, HF-RHF chickens had higher NPY expression than HF-RLF chickens (P<0.05). These results demonstrate: (1) that HF diet decreases food intake even when the subsequent diet is altered; (2) the orexigenic effect of hypothalamic AgRP; and (3) that dietary fat alters the response of hypothalamic NPY to subsequent energy intake. These findings provide a novel view of the metabolic perturbations associated with long-term dietary fat over-ingestion in chickens.
Asunto(s)
Alimentación Animal , Pollos/fisiología , Grasas de la Dieta/metabolismo , Ingestión de Alimentos , Ingestión de Energía , Neuropéptido Y/metabolismo , Alimentación Animal/análisis , Crianza de Animales Domésticos , Animales , Apetito , Pollos/sangre , Pollos/genética , Regulación de la Expresión Génica , Hipotálamo/fisiología , Insulina/sangre , Insulina/metabolismo , MasculinoRESUMEN
Glass is one of the most convenient materials for the development of microfluidic devices. However, most fabrication protocols require long processing times and expensive facilities. As a convenient alternative, polymeric materials have been extensively used due their lower cost and versatility. Although CO2 laser ablation has been used for fast prototyping on polymeric materials, it cannot be applied to glass devices because the local heating causes thermal stress and results in extensive cracking. A few papers have shown the ablation of channels or thin holes (used as reservoirs) on glass but the process is still far away from yielding functional glass microfluidic devices. To address these shortcomings, this communication describes a simple method to engrave glass-based capillary electrophoresis devices using standard (1 mm-thick) microscope glass slides. The process uses a sacrificial layer of wax as heat sink and enables the development of both channels (with semicircular shape) and pass-through reservoirs. Although microscope images showed some small cracks around the channels (that became irrelevant after sealing the engraved glass layer to PDMS) the proposed strategy is a leap forward in the application of the technology to glass. In order to demonstrate the capabilities of the approach, the separation of dopamine, catechol and uric acid was accomplished in less than 100 s.
Asunto(s)
Electroforesis Capilar/instrumentación , Dispositivos Laboratorio en un Chip , Dióxido de Carbono , Catecoles/aislamiento & purificación , Dopamina/aislamiento & purificación , Grabado y Grabaciones , Vidrio , Láseres de Gas , Ácido Úrico/aislamiento & purificación , CerasRESUMEN
Colorectal cancer (CRC) is the third most common cancer in the USA. MicroRNAs play important roles in the pathogenesis of CRC. In this study, we investigated the role of miR-30b in CRC and found that its expression was significantly lower in CRC tissues than that in normal tissues. We showed that a low expression level of miR-30b was closely related to poor differentiation, advanced TNM stage and poor prognosis of CRC. Further experiments showed that over-expression of miR-30b suppressed CRC cell proliferation in vitro and tumour growth in vivo. Specifically, miR-30b promoted G1 arrest and induced apoptosis. Moreover, KRAS, PIK3CD and BCL2 were identified as direct and functional targets of miR-30b. MiR-30b directly targeted the 3'-untranslated regions of their mRNAs and repressed their expression. This study revealed functional and mechanistic links between miRNA-30b and oncogene KRAS, PIK3CD and BCL2 in the pathogenesis of CRC. MiR-30b not only plays important roles in the regulation of cell proliferation and tumour growth in CRC, but is also a potential prognostic marker or therapeutic target for CRC. Restoration of miR-30b expression may represent a promising therapeutic approach for targeting malignant CRC.
Asunto(s)
Neoplasias Colorrectales/metabolismo , Genes Supresores de Tumor , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas ras/metabolismo , Regiones no Traducidas 3' , Animales , Apoptosis , Sitios de Unión , Diferenciación Celular , Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase I , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Biología Computacional , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Estadificación de Neoplasias , Fosfatidilinositol 3-Quinasas/genética , Pronóstico , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas p21(ras) , ARN Mensajero/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección , Carga Tumoral , Proteínas ras/genéticaRESUMEN
Engelhard (1996) proposed a rater accuracy model (RAM) as a means of evaluating rater accuracy in rating data, but very little research exists to determine the efficacy of that model. The RAM requires a transformation of the raw score data to accuracy measures by comparing rater-assigned scores to true scores. Indices computed based on raw scores also exist for measuring rater effects, but these indices ignore deviations of rater-assigned scores from true scores. This paper demonstrates the efficacy of two versions of the RAM (based on dichotomized and polytomized deviations of rater-assigned scores from true scores) to two versions of raw score rater effect models (i.e., a Rasch partial credit model, PCM, and a Rasch rating scale model, RSM). Simulated data are used to demonstrate the efficacy with which these four models detect and differentiate three rater effects: severity, centrality, and inaccuracy. Results indicate that the RAMs are able to detect, but not differentiate, rater severity and inaccuracy, but not rater centrality. The PCM and RSM, on the other hand, are able to both detect and differentiate all three of these rater effects. However, the RSM and PCM do not take into account true scores and may, therefore, be misleading when pervasive trends exist in the rater-assigned data.