Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(43): 21501-21507, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31570611

RESUMEN

The yellow fever mosquito, Aedes aegypti, vectors human pathogens. Juvenile hormones (JH) control almost every aspect of an insect's life, and JH analogs are currently used to control mosquito larvae. Since RNA interference does not work efficiently during the larval stages of this insect, JH regulation of larval development and mode of action of JH analogs are not well studied. To overcome this limitation, we used a multiple single guide RNA-based CRISPR/Cas9 genome-editing method to knockout the methoprene-tolerant (Met) gene coding for a JH receptor. The Met knockout larvae exhibited a black larval phenotype during the L3 (third instar larvae) and L4 (fourth instar larvae) stages and died before pupation. However, Met knockout did not affect embryonic development or the L1 and L2 stages. Microscopy studies revealed the precocious synthesis of a dark pupal cuticle during the L3 and L4 stages. Gene expression analysis showed that Krüppel homolog 1, a key transcription factor in JH action, was down-regulated, but genes coding for proteins involved in melanization, pupal and adult cuticle synthesis, and blood meal digestion in adults were up-regulated in L4 Met mutants. These data suggest that, during the L3 and L4 stages, Met mediates JH suppression of pupal/adult genes involved in the synthesis and melanization of the cuticle and blood meal digestion. These results help to advance our knowledge of JH regulation of larval development and the mode of action of JH analogs in Ae. aegypti.


Asunto(s)
Aedes/genética , Proteínas Portadoras/genética , Proteínas de Insectos/genética , Hormonas Juveniles/metabolismo , Metopreno/metabolismo , Aedes/crecimiento & desarrollo , Aedes/metabolismo , Animales , Proteínas Portadoras/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Proteínas de Insectos/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Mosquitos Vectores/genética , Mosquitos Vectores/crecimiento & desarrollo , Mosquitos Vectores/metabolismo , Pupa/genética , Pupa/crecimiento & desarrollo , Pupa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Proc Biol Sci ; 285(1883)2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30051874

RESUMEN

The area planted with insect-resistant genetically engineered crops expressing Bacillus thuringiensis (Bt) genes has greatly increased in many areas of the world. Given the nearby presence of non-Bt crops (including those planted as refuges) and non-crop habitats, pests targeted by the Bt trait have a choice between Bt and non-Bt crops or weeds, and their host preference may greatly affect insect management and management of pest resistance to Bt proteins. In this study, we examined the oviposition preference of the target pest of Bt rice, Chilo suppressalis, for Bt versus non-Bt rice plants as influenced by previous damage caused by C. suppressalis larvae. The results showed that C. suppressalis females had no oviposition preference for undamaged Bt or non-Bt plants but were repelled by conspecific-damaged plants whether Bt or non-Bt Consequently, C. suppressalis egg masses were more numerous on Bt plants than on neighbouring non-Bt plants both in greenhouse and in field experiments due to the significantly greater caterpillar damage on non-Bt plants. We also found evidence of poorer performance of C. suppressalis larvae on conspecific-damaged rice plants when compared with undamaged plants. GC-MS analyses showed that larval damage induced the release of volatiles that repelled mated C. suppressalis females in wind tunnel experiments. These findings suggest that Bt rice could act as a dead-end trap crop for C. suppressalis and thereby protect adjacent non-Bt rice plants. The results also indicate that the oviposition behaviour of target pest females should be considered in the development of Bt resistance management strategies.


Asunto(s)
Bacillus thuringiensis/química , Herbivoria , Mariposas Nocturnas/fisiología , Oryza/química , Oviposición , Control Biológico de Vectores , Animales , Cadena Alimentaria , Cromatografía de Gases y Espectrometría de Masas , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Oryza/genética , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética
3.
Langmuir ; 34(41): 12436-12444, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30248268

RESUMEN

The addition of nanoparticles to water-based lubricants is a commonly used method to improve lubrication, but to the best of our knowledge few studies have been reported to investigate the lubrication property of surface-modified nanodiamonds (ND) with polyzwitterionic brushes. In this study, a bioinspired copolymer containing dopamine and 2-methacryloyloxyethyl phosphorylcholine (MPC) was synthesized (DMA-MPC) and then spontaneously grafted onto the ND surface (ND-MPC) through simple stirring in order to enhance lubrication. The characterization of transmission electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis indicated that the DMA-MPC was successfully modified on the ND surface. Furthermore, a series of tribological experiment were performed on a universal materials tester using glycerol, glycerol + ND, and glycerol + ND-MPC as the lubricants. It was found that the addition of ND to the lubricant (i.e., glycerol + ND and glycerol + ND-MPC) significantly reduced wear with a smaller wear scar and wear track on the tribopairs, and the coefficient of friction further decreased by about 40% when using glycerol + ND-MPC as the lubricant, which could be attributed to the hydration lubrication of the polyzwitterionic brushes modified on the ND surface and the rolling effect of nanoparticles. In conclusion, in this study a universal and versatile surface modification method was proposed on the basis of the synthesis of bioinspired copolymer DMA-MPC, which remarkably enhanced the lubrication property of ND nanoparticles when added to water-based lubricants.

4.
J Invertebr Pathol ; 136: 95-9, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26994840

RESUMEN

Transformation of rice with genes encoding insecticidal Cry proteins from Bacillus thuringiensis (Bt) should confer high resistance to target lepidopteran pests, such as Chilo suppressalis, and low toxicity to non-target organisms, such as silkworm Bombyx mori. Five purified Cry proteins that have been used for plant transformation were tested using dietary exposure assays. The susceptibility of C. suppressalis larvae to the five insecticidal proteins in the decreasing order was: Cry1Ca>Cry1Ab>Cry1Ac>Cry2Aa>Cry1Fa. However, the toxicities of the Cry proteins to B. mori were in the order: Cry1Fa>Cry1Ca>Cry2Aa>Cry1Ab>Cry1Ac. The Cry1Ca, Cry1Ab and Cry1Ac proteins exhibited relatively high toxicity to C. suppressalis larvae, with EC50 values of 16.4, 45.8 and 89.6ng/g, respectively. The toxicities of the three Cry proteins to B. mori larvae were 8, 14, and 22times lower, with EC50 values of 138.3, 628.4 and 1939.2ng/g, respectively. The Cry1Fa and Cry2Aa proteins showed high toxicity to B. mori larvae, with EC50 values of 135.7 and 373.9ng/g, respectively, but low toxicity to C. suppressalis larvae, with EC50 values of 6092.1 and 1208.5ng/g, respectively. We thus conclude that Cry1Ab, Cry1Ac and Cry1Ca are appropriate for transforming rice to control lepidopteran rice pests. In contrast, Cry1Fa and Cry2Aa are not appropriate due to their high toxicity to silkworm larvae and low activity against the target pest.


Asunto(s)
Proteínas Bacterianas/análisis , Toxinas Bacterianas/análisis , Oryza/genética , Oryza/microbiología , Control Biológico de Vectores/métodos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , Animales , Bacillus thuringiensis/genética , Insecticidas/farmacología , Lepidópteros/microbiología
5.
J Agric Food Chem ; 72(1): 577-589, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38135672

RESUMEN

Double-stranded RNA (dsRNA) pesticides, those based on RNA interference (RNAi) technology utilizing dsRNA, have shown potential for pest control. However, the off-target effects of dsRNA pose limitations to the widespread application of RNAi and raise concerns regarding potential side effects on other beneficial organisms. The precise impact and underlying factors of these off-target effects are still not well understood. Here, we found that the transcript level and sequence matching jointly regulate off-target effects of dsRNA. The much lower expressed target genes were knocked down to a lesser extent than genes with higher expression levels, and the critical sequence identity of off-target effects is approximately 80%. Moreover, off-target effects could be triggered by a contiguous matching sequence length exceeding 15 nt as well as nearly perfectly matching sequences with one or two base mismatches exceeding 19 nt. Increasing the dosage of dsRNA leads to more severe off-target effects. However, the length of mismatched dsRNA, the choice of different RNAi targets, and the location of target sites within the same gene do not affect the severity of off-target effects. These parameters can be used to guide the design of possibly selective sequences for RNAi, optimize the specificity and efficiency of dsRNA, and facilitate practical applications of RNAi for pest control.


Asunto(s)
ARN Bicatenario , Interferencia de ARN , ARN Bicatenario/genética
6.
Insect Biochem Mol Biol ; 159: 103985, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422274

RESUMEN

Gene expression is regulated at various levels, including post-transcriptional mRNA modifications, where m6A methylation is the most common modification of mRNA. The m6A methylation regulates multiple stages of mRNA processing, including splicing, export, decay, and translation. How m6A modification is involved in insect development is not well known. We used the red flour beetle, Tribolium castaneum, as a model insect to identify the role of m6A modification in insect development. RNA interference (RNAi)-mediated knockdown of genes coding for m6A writers (m6A methyltransferase complex, depositing m6A to mRNA) and readers (YTH-domain proteins, recognizing and executing the function of m6A) was conducted. Knockdown of most writers during the larval stage caused a failure of ecdysis during eclosion. The loss of m6A machinery sterilized both females and males by interfering with the functioning of reproductive systems. Females treated with dsMettl3, the main m6A methyltransferase, laid significantly fewer and reduced-size eggs than the control insects. In addition, the embryonic development in eggs laid by dsMettl3 injected females was terminated in the early stages. Knockdown studies also showed that the cytosol m6A reader, YTHDF, is likely responsible for executing the function of m6A modifications during insect development. These data suggest that m6A modifications are critical for T. castaneum development and reproduction.


Asunto(s)
Tribolium , Femenino , Masculino , Animales , Tribolium/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Metilación , Reproducción , Metiltransferasas/genética , Metiltransferasas/metabolismo , Interferencia de ARN
7.
Commun Biol ; 5(1): 1252, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380075

RESUMEN

The disproportionate growth of insect appendages such as facultative growth of wings and exaggeration of beetle horns are examples of phenotypic plasticity. Insect metamorphosis is the critical stage for development of pupal and adult structures and degeneration of the larval cells. How the disproportionate growth of external appendages is regulated during tissue remodeling remains unanswered. Tribolium castaneum is used as a model to study the function of mitochondria in metamorphosis. Mitochondrial dysfunction is achieved by the knockdown of key mitochondrial regulators. Here we show that mitochondrial function is not required for metamorphosis except that severe mitochondrial dysfunction blocks ecdysis. Surprisingly, various abnormal wing growth, including short and wingless phenotypes, are induced after knocking down mitochondrial regulators. Mitochondrial activity is regulated by IIS (insulin/insulin-like growth factor signaling)/FOXO (forkhead box, sub-group O) pathway through TFAM (transcription factor A, mitochondrial). RNA sequencing and differential gene expression analysis show that wing-patterning and insect hormone response genes are downregulated, while programmed cell death and immune response genes are upregulated in insect wing discs with mitochondrial dysfunction. These studies reveal that mitochondria play critical roles in regulating insect wing growth by targeting wing development during metamorphosis, thus showing a novel molecular mechanism underlying developmental plasticity.


Asunto(s)
Tribolium , Animales , Metamorfosis Biológica/genética , Pupa/genética , Alas de Animales , Mitocondrias/genética
8.
CRISPR J ; 5(6): 813-824, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36374965

RESUMEN

Methoprene, a juvenile hormone (JH) analog, is widely used for insect control, but its mode of action is not known. To study methoprene action in the yellow fever mosquito, Aedes aegypti, the E93 (ecdysone-induced transcription factor) was knocked out using the CRISPR-Cas9 system. The E93 mutant pupae retained larval tissues similar to methoprene-treated insects. These insects completed pupal ecdysis and died as pupa. In addition, the expression of transcription factors, broad complex and Krüppel homolog 1 (Kr-h1), increased and that of programmed cell death (PCD) and autophagy genes decreased in E93 mutants. These data suggest that methoprene functions through JH receptor, methoprene-tolerant, and induces the expression of Kr-h1, which suppresses the expression of E93, resulting in a block in PCD and autophagy of larval tissues. Failure in the elimination of larval tissues and the formation of adult structures results in their death. These results answered long-standing questions on the mode of action of methoprene.


Asunto(s)
Aedes , Fiebre Amarilla , Animales , Metopreno/farmacología , Metopreno/metabolismo , Aedes/genética , Aedes/metabolismo , Fiebre Amarilla/genética , Edición Génica , Sistemas CRISPR-Cas/genética , Metamorfosis Biológica/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Hormonas Juveniles/genética , Hormonas Juveniles/farmacología , Hormonas Juveniles/metabolismo , Pupa/genética , Pupa/metabolismo , Larva/genética , Larva/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Front Genet ; 13: 942884, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35899187

RESUMEN

In insects, the shedding of the old exoskeleton is accomplished through ecdysis which is typically followed by the expansion and tanning of the new cuticle. Four neuropeptides, eclosion hormone (EH), ecdysis triggering hormone (ETH), crustacean cardioactive peptide (CCAP) and bursicon (Bur) are known to control ecdysis. However, the regulation of these neuropeptide genes is still poorly understood. Here, we report that in the red flour beetle (RFB) Tribolium castaneum and the fall armyworm (FAW) Spodoptera frugiperda, knockdown or knockout of the SoxC gene caused eclosion defects. The expansion and tanning of wings were not complete. In both RFB and FAW, the knockdown or knockout of SoxC resulted in a decrease in the expression of EH gene. Electrophoretic mobility shift assays revealed that the SfSoxC protein directly binds to a motif present in the promoter of SfEH. The luciferase reporter assays in Sf9 cells confirmed these results. These data suggest that transcription factor SoxC plays a key role in ecdysteroid induction of genes coding for neuropeptides such as EH involved in the regulation of insect eclosion.

10.
Elife ; 92020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32778222

RESUMEN

Plants typically release large quantities of volatiles in response to herbivory by insects. This benefits the plants by, for instance, attracting the natural enemies of the herbivores. We show that the brown planthopper (BPH) has cleverly turned this around by exploiting herbivore-induced plant volatiles (HIPVs) that provide safe havens for its offspring. BPH females preferentially oviposit on rice plants already infested by the rice striped stem borer (SSB), which are avoided by the egg parasitoid Anagrus nilaparvatae, the most important natural enemy of BPH. Using synthetic versions of volatiles identified from plants infested by BPH and/or SSB, we demonstrate the role of HIPVs in these interactions. Moreover, greenhouse and field cage experiments confirm the adaptiveness of the BPH oviposition strategy, resulting in 80% lower parasitism rates of its eggs. Besides revealing a novel exploitation of HIPVs, these findings may lead to novel control strategies against an exceedingly important rice pest.


Asunto(s)
Hemípteros/parasitología , Herbivoria , Mariposas Nocturnas/fisiología , Oryza , Oviposición , Compuestos Orgánicos Volátiles/metabolismo , Avispas/fisiología , Animales , Femenino , Hemípteros/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/metabolismo , Ninfa/crecimiento & desarrollo , Ninfa/parasitología , Oryza/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA