Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Ann Neurol ; 90(5): 789-807, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34476836

RESUMEN

OBJECTIVE: Parkinson's disease (PD) manifests in motor dysfunction, non-motor symptoms, and eventual dementia (PDD). Neuropathological hallmarks include nigrostriatal neurodegeneration, Lewy body (LB) pathology, and neuroinflammation. Alpha-synuclein (α-syn), a primary component of LBs, is implicated in PD pathogenesis, accumulating, and aggregating in both familial and sporadic PD. However, as α-syn pathology is often comorbid with amyloid-beta (Aß) plaques and phosphorylated tau (pTau) tangles in PDD, it is still unclear whether α-syn is the primary cause of neurodegeneration in sporadic PDD. We aimed to determine how the absence of α-syn would affect PDD manifestation. METHODS: IFN-ß knockout (Ifnb-/- ) mice spontaneously develop progressive behavior abnormalities and neuropathology resembling PDD, notably with α-syn+ LBs. We generated Ifnb/Snca double knockout (DKO) mice and evaluated their behavior and neuropathology compared with wild-type (Wt), Ifnb-/- , and Snca-/- mice using immunohistochemistry, electron microscopy, immunoblots, qPCR, and modification of neuronal signaling. RESULTS: Ifnb/Snca DKO mice developed all clinical PDD-like behavioral manifestations induced by IFN-ß loss. Independently of α-syn expression, lack of IFN-ß alone induced Aß plaques, pTau tangles, and LB-like Aß+ /pTau+ inclusion bodies and neuroinflammation. IFN-ß loss caused significant elevated glial and neuronal TNF-α and neuronal TNFR1, associated with neurodegeneration. Restoring neuronal IFN-ß signaling or blocking TNFR1 rescued caspase 3/t-BID-mediated neuronal-death through upregulation of c-FLIPS and lowered intraneuronal Aß and pTau accumulation. INTERPRETATION: These findings increase our understanding of PD pathology and suggest that targeting α-syn alone is not sufficient to mitigate disease. Targeting specific aspects of neuroinflammation, such as aberrant neuronal TNF-α/TNFR1 or IFN-ß/IFNAR signaling, may attenuate disease. ANN NEUROL 2021;90:789-807.


Asunto(s)
Enfermedades Neuroinflamatorias/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Progresión de la Enfermedad , Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/metabolismo , Ratones Noqueados , Neuroglía/patología , Enfermedad de Parkinson/genética , Placa Amiloide/metabolismo , Factor de Necrosis Tumoral alfa/deficiencia
2.
Immunology ; 163(4): 348-362, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33682108

RESUMEN

Nucleotide-binding domain and leucine-rich repeat receptor (NLR)-mediated inflammasome activation is important in host response to microbes, danger-associated molecular patterns (DAMPs) and metabolic disease. Some NLRs have been shown to interact with distinct cell metabolic pathways and cause negative regulation, tumorigenesis and autoimmune disorders, interacting with multiple innate immune receptors to modulate disease. NLR activation is therefore crucial in host response and in the regulation of metabolic pathways that can trigger a wide range of immunometabolic diseases or syndromes. However, the exact mode by which some of the less well-studied NLR inflammasomes are activated, interact with other metabolites and immune receptors, and the role they play in the progression of metabolic diseases is still not fully elucidated. In this study, we review up-to-date evidence regarding NLR function in metabolic pathways and the interplay with other immune receptors involved in GPCR signalling, gut microbiota and the complement system, in order to gain a better understanding of its link to disease processes.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Proteínas del Sistema Complemento/metabolismo , Inflamasomas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Enfermedades Autoinmunes/inmunología , Microbioma Gastrointestinal , Humanos , Inmunidad Innata , Receptor Cross-Talk , Transducción de Señal
3.
Front Immunol ; 13: 918551, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248901

RESUMEN

The complement system is an ancient and critical part of innate immunity. Recent studies have highlighted novel roles of complement beyond lysis of invading pathogens with implications in regulating the innate immune response, as well as contributing to metabolic reprogramming of T-cells, synoviocytes as well as cells in the CNS. These findings hint that complement can be an immunometabolic regulator, but whether this is also the case for the terminal step of the complement pathway, the membrane attack complex (MAC) is not clear. In this study we focused on determining whether MAC is an immunometabolic regulator of the innate immune response in human monocyte-derived macrophages. Here, we uncover previously uncharacterized metabolic changes and mitochondrial dysfunction occurring downstream of MAC deposition. These alterations in glycolytic flux and mitochondrial morphology and function mediate NLRP3 inflammasome activation, pro-inflammatory cytokine release and gasdermin D formation. Together, these data elucidate a novel signalling cascade, with metabolic alterations at its center, in MAC-stimulated human macrophages that drives an inflammatory consequence in an immunologically relevant cell type.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Humanos , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
4.
Nat Commun ; 13(1): 1406, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35301296

RESUMEN

Human rhinovirus (HRV), like coronavirus (HCoV), are positive-strand RNA viruses that cause both upper and lower respiratory tract illness, with their replication facilitated by concentrating RNA-synthesizing machinery in intracellular compartments made of modified host membranes, referred to as replication organelles (ROs). Here we report a non-canonical, essential function for stimulator of interferon genes (STING) during HRV infections. While the canonical function of STING is to detect cytosolic DNA and activate inflammatory responses, HRV infection triggers the release of STIM1-bound STING in the ER by lowering Ca2+, thereby allowing STING to interact with phosphatidylinositol 4-phosphate (PI4P) and traffic to ROs to facilitates viral replication and transmission via autophagy. Our results thus hint a critical function of STING in HRV viral replication and transmission, with possible implications for other RO-mediated RNA viruses.


Asunto(s)
Enterovirus , Virus ARN , Humanos , Orgánulos , Rhinovirus , Replicación Viral/fisiología
5.
EBioMedicine ; 61: 103039, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33038762

RESUMEN

The signalling receptor for LPS, CD14, is a key marker of, and facilitator for, pro-inflammatory macrophage function. Pro-inflammatory macrophage differentiation remains a process facilitating a broad array of disease pathologies, and has recently emerged as a potential target against cytokine storm in COVID19. Here, we perform a whole-genome CRISPR screen to identify essential nodes regulating CD14 expression in myeloid cells, using the differentiation of THP-1 cells as a starting point. This strategy uncovers many known pathways required for CD14 expression and regulating macrophage differentiation while additionally providing a list of novel targets either promoting or limiting this process. To speed translation of these results, we have then taken the approach of independently validating hits from the screen using well-curated small molecules. In this manner, we identify pharmacologically tractable hits that can either increase CD14 expression on non-differentiated monocytes or prevent CD14 upregulation during macrophage differentiation. An inhibitor for one of these targets, MAP2K3, translates through to studies on primary human monocytes, where it prevents upregulation of CD14 following M-CSF induced differentiation, and pro-inflammatory cytokine production in response to LPS. Therefore, this screening cascade has rapidly identified pharmacologically tractable nodes regulating a critical disease-relevant process.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Receptores de Lipopolisacáridos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Biomarcadores , Células Cultivadas , Citocinas/metabolismo , Humanos , Inmunofenotipificación , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/efectos adversos , Macrófagos/efectos de los fármacos , Células THP-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA