Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hum Mol Genet ; 26(2): 407-419, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28013293

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder featured with multi-organ benign tumours. Disruption of TSC1/TSC2 complex suppression on mammalian/mechanistic target of rapamycin (mTOR) signalling causes TSC. Hyperactive mTOR-mediated negative feedback regulation of AKT partially contributes to the benign nature of TSC-associated tumours. In this study, we demonstrated that osteopontin (OPN) was dramatically reduced by loss of TSC1/TSC2 complex in Tsc2-null mouse embryonic fibroblasts (MEFs), rat uterine leiomyoma-derived Tsc2-deficient cells, genetically modified mouse TSC models, and clinical samples. TSC1/TSC2 complex upregulation of OPN expression is mediated by transcription factor SOX9 in an mTOR-independent manner. Moreover, ablation of OPN by deficient TSC1/TSC2 complex contributed to inactivation of AKT in TSC cells. Lastly, the abundance of OPN dictated the potency of cell proliferation and tumour development. Therefore, loss of TSC1/TSC2 complex led to mTOR-independent inhibition of AKT at least partially through downregulation of the SOX9-OPN signalling cascade. We suggest that the decreased SOX9-OPN-AKT signalling pathway safeguard against the development of malignant tumours in TSC patients.


Asunto(s)
Proteína Oncogénica v-akt/genética , Osteopontina/genética , Factor de Transcripción SOX9/genética , Serina-Treonina Quinasas TOR/genética , Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor/genética , Animales , Proliferación Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Ratones , Neoplasias/genética , Neoplasias/patología , Ratas , Transducción de Señal , Esclerosis Tuberosa/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa
2.
Toxicol Appl Pharmacol ; 366: 10-16, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30653976

RESUMEN

Idiopathic pulmonary fibrosis is a pathological result of dysfunctional repair response to tissue injury, leading to chronically impaired gas exchange and death. Macrophages are believed to be critical in this disease pathogenesis; However, the exact mechanisms remain enigmatic. Here, we demonstrated that macrophages might contribute to pulmonary fibrosis at the early stage because the aggregation of macrophages appeared earlier than epithelial-mesenchymal transition and fibrosis in mouse and rat experimental models of pulmonary fibrosis. It has been found that macrophages could promote epithelial-mesenchymal transition of alveolar epithelial cells and fibroblast migration in co-culture models between macrophages and alveolar epithelial cells/fibroblasts. Importantly, we used protein micro array to analyze the cytokines that were altered after bleomycin treatment. Only thymic stromal lymphopoietin and matrix metalloproteinase 9 were significantly increased. We further confirmed that TSLP participated in the macrophage-induced epithelial-mesenchymal transition of alveolar epithelial cells using a TSLP recombinant protein. MMP9 was also involved in macrophage-induced fibroblast migration, which can be reversed by an inhibitor of MMP9. Collectively, these findings explained the underlying mechanisms of macrophage-promoted pulmonary fibrosis.


Asunto(s)
Bleomicina , Citocinas/metabolismo , Fibroblastos/enzimología , Pulmón/enzimología , Macrófagos Alveolares/enzimología , Metaloproteinasa 9 de la Matriz/metabolismo , Fibrosis Pulmonar/enzimología , Animales , Línea Celular , Movimiento Celular , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Femenino , Fibroblastos/patología , Pulmón/patología , Macrófagos Alveolares/patología , Ratones Endogámicos ICR , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Ratas Wistar , Transducción de Señal , Factores de Tiempo , Linfopoyetina del Estroma Tímico
3.
Cell Death Dis ; 12(2): 172, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568640

RESUMEN

As evidenced by the behavior of loss-of-function mutants of PTEN in the context of a gain-of-function mutation of AKT1, the PTEN-AKT1 signaling pathway plays a critical role in human cancers. In this study, we demonstrated that a deficiency in PTEN or activation of AKT1 potentiated the expression of platelet-derived growth factor receptor α (PDGFRα) based on studies on Pten-/- mouse embryonic fibroblasts, human cancer cell lines, the hepatic tissues of Pten conditional knockout mice, and human cancer tissues. Loss of PTEN enhanced PDGFRα expression via activation of the AKT1-CREB signaling cascade. CREB transactivated PDGFRα expression by direct binding of the promoter of the PDGFRα gene. Depletion of PDGFRα attenuated the tumorigenicity of Pten-null cells in nude mice. Moreover, the PI3K-AKT signaling pathway has been shown to positively correlate with PDGFRα expression in multiple cancers. Augmented PDGFRα was associated with poor survival of cancer patients. Lastly, combination treatment with the AKT inhibitor MK-2206 and the PDGFR inhibitor CP-673451 displayed synergistic anti-tumor effects. Therefore, activation of the AKT1-CREB-PDGFRα signaling pathway contributes to the tumor growth induced by PTEN deficiency and should be targeted for cancer treatment.


Asunto(s)
Proliferación Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Fibroblastos/enzimología , Hígado/enzimología , Neoplasias/enzimología , Fosfohidrolasa PTEN/deficiencia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bencimidazoles/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Fosfohidrolasa PTEN/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Quinolinas/farmacología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Eur J Pharmacol ; 874: 173026, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32088177

RESUMEN

Cisplatin is a widely used chemotherapy drug that is first-line therapy for a variety of tumors. Unfortunately, its adverse effects on various normal tissues and organs, especially nephrotoxicity, threaten the life of patients. Although the mechanism of cisplatin nephrotoxicity has been confirmed to be related to oxidative stress, apoptosis of renal tubular epithelial cells and inflammatory response, there is no effective prevention strategy in the clinic. Here, we found that bisdemethoxycurcumin (BDMC), a natural compound, can significantly attenuates cisplatin-induced apoptosis of renal tubular epithelial cells in vitro at the concentration of 5-20 µM and has a significant protective effect on cisplatin-induced kidney injury in mice at the dose of 50 mg/kg. Mechanistically, BDMC attenuates cisplatin-induced apoptosis of renal tubular epithelial cells by inhibiting cisplatin-induced up-regulation of p53. Meanwhile, BDMC counteracts oxidative stress by inhibiting cisplatin-induced down-regulation of nuclear factor erythroid-2-related factor 2 (Nrf2). BDMC also significantly reduced the expression of intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1) proteins, as well as the expression and translocation of the p65 subunit of nuclear factor-κB (NF-κB p65) into the nucleus, all of which were increased in the kidney by cisplatin treatment. Collectively, BDMC might be an effective prevention strategy which could against cisplatin-induced nephrotoxicity, and our research may shed a new light on treatment of drug toxicity.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antineoplásicos , Antioxidantes/uso terapéutico , Cisplatino , Diarilheptanoides/uso terapéutico , Enfermedades Renales/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Quimiocina CCL2/metabolismo , Diarilheptanoides/farmacología , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones Endogámicos ICR , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
5.
Cell Signal ; 75: 109767, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32890667

RESUMEN

Tumor suppressor gene PTEN is frequently mutated in a wide variety of cancers. However, the downstream targets or signal transduction pathways of PTEN remain not fully understood. By analyzing Pten-null mouse embryonic fibroblasts (MEFs) cell lines and their isogenic counterparts, we showed that loss of PTEN led to increased cyclooxygenase2 (COX2) expression in an AKT-independent manner. Moreover, we demonstrated that PTEN deficiency promotes the transcription of COX2 via upregulation of the transcription factor Krüppel-like factor 5 (KLF5). Knocked down the expression of COX2 suppressed proliferation, migration and tumoral growth of Pten-null cells. Further experiments revealed that COX2 enhanced Pten-null MEFs growth and migration through upregulation of NADPH oxidase 4 (NOX4). In addition, MK-2206, a specific inhibitor of AKT, in combination with celecoxib, a COX2 inhibitor, strongly inhibited Pten-deficient cell growth. We concluded that KLF5/COX2/NOX4 signaling pathway is critical for cell growth and migration caused by the loss of PTEN, and the combination of MK-2206 and celecoxib may be an effective new approach to treating PTEN deficiency related tumors.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Fosfohidrolasa PTEN/metabolismo , Animales , Línea Celular , Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C
6.
Eur J Pharmacol ; 847: 26-31, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30660576

RESUMEN

Renal fibrosis is the common final outcome of nearly all progressive chronic kidney diseases (CKD) that eventually develop into end-stage renal failure, which threatens the lives of patients. Currently, there are no effective drugs for the treatment of renal fibrosis. However, studies have shown that certain plant natural products have a fibrosis-alleviating effect. Thus, we have screened a large number of natural products for their ability to protect against renal fibrosis and found that bisdemethoxycurcumin has a good therapeutic effect in renal fibrosis according to the data obtained in a mouse model of unilateral ureteral obstruction (UUO). The results indicate that bisdemethoxycurcumin can efficiently attenuate renal fibrosis induced by UUO. Additional studies of the bisdemethoxycurcumin mechanism of action in the treatment of renal fibrosis demonstrated that the therapeutic effect of bisdemethoxycurcumin is mediated by the specific induction of fibroblast apoptosis at a concentration of 20 µM. bisdemethoxycurcumin can efficiently protect against renal fibrosis both in vitro and in vivo. This discovery will provide new ideas for renal fibrosis treatment in clinics and a new direction for the development of effective drug therapy of renal fibrosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Curcumina/análogos & derivados , Fibroblastos/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Riñón/efectos de los fármacos , Sustancias Protectoras/farmacología , Insuficiencia Renal Crónica/tratamiento farmacológico , Animales , Productos Biológicos/farmacología , Línea Celular , Curcumina/farmacología , Diarilheptanoides , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Obstrucción Ureteral/tratamiento farmacológico , Sistema Urinario/efectos de los fármacos
7.
J Cancer ; 8(4): 555-562, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28367235

RESUMEN

Tuberous sclerosis complex (TSC), caused by loss-of-function mutations in the TSC1 or TSC2 genes, is an autosomal dominant disease characterized by benign tumor formation in multiple organs. Hyperactivation of mammalian target of rapamycin (mTOR) is the primary alteration underlying TSC tumor. Thus, rapamycin, as an mTOR specific inhibitor, has been assumed as a potential drug for the treatment of TSC. However, its application in TSC patients has been limited due to side effects. By analyzing Tsc1- or Tsc2-null mouse embryonic fibroblasts (MEFs), we found that loss of TSC1 or TSC2 led to a decreased sensitivity to MK-2206, a novel allosteric Akt inhibitor. Ectopic expression of a constitutively activated Akt (myristoylated Akt-1, myrAkt-1) sensitized Tsc2-null and Tsc1-null MEFs to MK-2206. Furthermore, MK-2206 increased the cytotoxicity of rapamycin in Tsc1-/- or Tsc2-/- MEFs. Moreover, the benefit of the combinatorial treatment was also demonstrated in a TSC xenograft mouse model. We conclude that the combination of rapamycin and MK-2206 may be utilized as a new therapeutic regimen for TSC.

8.
Oncotarget ; 8(33): 54858-54872, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28903387

RESUMEN

Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1), caused by loss-of-function mutations in either the TSC1 or TSC2 gene, leads to the development of tuberous sclerosis complex (TSC), a benign tumor syndrome with multiple affected organs. mTORC1-mediated inhibition of AKT constrains the tumor progression of TSC, but the exact mechanisms remain unclear. Herein we showed that loss of TSC1 or TSC2 downregulation of platelet-derived growth factor receptor α (PDGFRα) expression was mediated by mTORC1. Moreover, mTORC1 inhibited PDGFRα expression via suppression of forkhead box O3a (FOXO3a)-mediated PDGFRα gene transcription. In addition, ectopic expression of PDGFRα promoted AKT activation and enhanced proliferation and tumorigenic capacity of Tsc1- or Tsc2-null mouse embryonic fibroblasts (MEFs), and vice versa. Most importantly, rapamycin in combination with AG1295, a PDGFR inhibitor, significantly inhibited growth of TSC1/TSC2 complex-deficient cells in vitro and in vivo. Therefore, downregulated FOXO3a/PDGFRα/AKT pathway exerts a protective effect against hyperactivated mTORC1-induced tumorigenesis caused by loss of TSC1/TSC2 complex, and the combination of rapamycin and AG1295 may be a new effective strategy for TSC-associated tumors treatment.

9.
Oncotarget ; 7(19): 28435-47, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27078846

RESUMEN

Tuberous sclerosis complex (TSC), caused by loss-of-function mutations in the TSC1 or TSC2 gene, is characterized by benign tumor formation in multiple organs. Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) is the primary alteration underlying TSC tumors. By analyzing Tsc2-null mouse embryonic fibroblasts (MEFs) and rat uterine leiomyoma-derived Tsc2-null ELT3 cells, we detected evidence for the involvement of cyclooxygenase 2 (COX2) as a downstream target of mTORC1 in the development of TSC tumors. We showed that loss of TSC2 led to decreased COX2 expression through activation of an mTORC1/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Overexpression of COX2 promoted proliferation and tumoral growth of Tsc2-null cells. COX2 knockdown inhibited the proliferation of the control cells. COX2 enhanced Tsc2-null cell growth through upregulation of interleukin-6 (IL-6). In addition, rapamycin in combination with celecoxib, a COX2 inhibitor, strongly inhibited Tsc2-deficient cell growth. We conclude that downregulation of COX2 exerts a protective effect against hyperactivated mTORC1-mediated tumorigenesis caused by the loss of TSC2, and the combination of rapamycin and celecoxib may be an effective new approach to treating TSC.


Asunto(s)
Ciclooxigenasa 2/biosíntesis , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias/genética , Esclerosis Tuberosa/complicaciones , Proteínas Supresoras de Tumor/deficiencia , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinogénesis/metabolismo , Celecoxib/farmacología , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Ratones , Neoplasias/metabolismo , Ratas , Sirolimus/farmacología , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/patología , Proteína 2 del Complejo de la Esclerosis Tuberosa
10.
Cancer Lett ; 359(1): 97-106, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25578782

RESUMEN

Accumulating evidence indicates that mammalian target of rapamycin (mTOR) exerts a crucial role in aerobic glycolysis and tumorigenesis, but the underlying mechanisms remain largely obscure. Results from Tsc1- or Tsc2-null mouse embryonic fibroblasts (MEFs) and human cancer cell lines consistently indicate that the expression of glucose transporter 3 (Glut3) is dramatically up-regulated by mTOR. The rapamycin-sensitive mTOR complex 1 (mTORC1), but not the rapamycin-insensitive mTOR complex 2 (mTORC2), was involved in the regulation of Glut3 expression. Moreover, mTORC1 enhances Glut3 expression through the activation of the IKK/NFκB pathway. Depletion of Glut3 led to the suppression of aerobic glycolysis, the inhibition of cell proliferation and colony formation, and the attenuation of the tumorigenic potential of the cells with aberrantly hyper-activated mTORC1 signaling in nude mice. We conclude that Glut3 is a downstream target of mTORC1, and it is critical for oncogenic mTORC1-mediated aerobic glycolysis and tumorigenesis. Hence Glut3 may be a potential target for therapy against cancers caused by the aberrantly activated mTORC1 signaling.


Asunto(s)
Proliferación Celular , Transportador de Glucosa de Tipo 3/metabolismo , Glucólisis , FN-kappa B/metabolismo , Neoplasias/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transportador de Glucosa de Tipo 3/genética , Glucólisis/efectos de los fármacos , Células HEK293 , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , FN-kappa B/genética , Neoplasias/genética , Neoplasias/patología , Regiones Promotoras Genéticas , Interferencia de ARN , Ratas , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/genética , Factores de Tiempo , Transfección , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Carga Tumoral , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA