Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36903579

RESUMEN

The visualization of organs and tissues using 31P magnetic resonance (MR) imaging represents an immense challenge. This is largely due to the lack of sensitive biocompatible probes required to deliver a high-intensity MR signal that can be distinguished from the natural biological background. Synthetic water-soluble phosphorus-containing polymers appear to be suitable materials for this purpose due to their adjustable chain architecture, low toxicity, and favorable pharmacokinetics. In this work, we carried out a controlled synthesis, and compared the MR properties, of several probes consisting of highly hydrophilic phosphopolymers differing in composition, structure, and molecular weight. Based on our phantom experiments, all probes with a molecular weight of ~3-400 kg·mol-1, including linear polymers based on poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(ethyl ethylenephosphate) (PEEP), and poly[bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)]phosphazene (PMEEEP) as well as star-shaped copolymers composed of PMPC arms grafted onto poly(amidoamine) dendrimer (PAMAM-g-PMPC) or cyclotriphosphazene-derived cores (CTP-g-PMPC), were readily detected using a 4.7 T MR scanner. The highest signal-to-noise ratio was achieved by the linear polymers PMPC (210) and PMEEEP (62) followed by the star polymers CTP-g-PMPC (56) and PAMAM-g-PMPC (44). The 31P T1 and T2 relaxation times for these phosphopolymers were also favorable, ranging between 1078 and 2368 and 30 and 171 ms, respectively. We contend that select phosphopolymers are suitable for use as sensitive 31P MR probes for biomedical applications.


Asunto(s)
Fósforo , Polímeros , Polímeros/química , Metacrilatos/química , Micelas , Fosforilcolina/química , Espectroscopía de Resonancia Magnética , Materiales Biocompatibles/química , Ácidos Polimetacrílicos/química , Propiedades de Superficie
2.
Biomacromolecules ; 23(11): 4814-4824, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36251480

RESUMEN

19F magnetic resonance imaging (MRI) using fluoropolymer tracers has recently emerged as a promising, non-invasive diagnostic tool in modern medicine. However, despite its potential, 19F MRI remains overlooked and underused due to the limited availability or unfavorable properties of fluorinated tracers. Herein, we report a straightforward synthetic route to highly fluorinated 19F MRI nanotracers via aqueous dispersion polymerization-induced self-assembly of a water-soluble fluorinated monomer. A polyethylene glycol-based macromolecular chain-transfer agent was extended by RAFT-mediated N-(2,2,2-trifluoroethyl)acrylamide (TFEAM) polymerization in water, providing fluorine-rich self-assembled nanoparticles in a single step. The resulting nanoparticles had different morphologies and sizes ranging from 60 to 220 nm. After optimizing their structure to maximize the magnetic relaxation of the fluorinated core, we obtained a strong 19F NMR/MRI signal in an aqueous environment. Their non-toxicity was confirmed on primary human dermal fibroblasts. Moreover, we visualized the nanoparticles by 19F MRI, both in vitro (in aqueous phantoms) and in vivo (after subcutaneous injection in mice), thus confirming their biomedical potential.


Asunto(s)
Nanopartículas , Agua , Humanos , Ratones , Animales , Polimerizacion , Acrilamida , Imagen por Resonancia Magnética/métodos , Nanopartículas/química
3.
Biomacromolecules ; 22(7): 2963-2975, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34180669

RESUMEN

The use of fluorinated contrast agents in magnetic resonance imaging (MRI) facilitates improved image quality due to the negligible amount of endogenous fluorine atoms in the body. In this work, we present a comprehensive study of the influence of the amphiphilic polymer structure and composition on its applicability as contrast agents in 19F MRI. Three series of novel fluorine-containing poly(2-oxazoline) copolymers and terpolymers, hydrophilic-fluorophilic, hydrophilic-lipophilic-fluorophilic, and hydrophilic-thermoresponsive-fluorophilic, with block and gradient distributions of the fluorinated units, were synthesized. It was discovered that the CF3 in the 2-(3,3,3-trifluoropropyl)-2-oxazoline (CF3EtOx) group activated the cationic chain end, leading to faster copolymerization kinetics, whereby spontaneous monomer gradients were formed with accelerated incorporation of 2-methyl-2-oxazoline or 2-n-propyl-2-oxazoline with a gradual change to the less-nucleophilic CF3EtOx monomer. The obtained amphiphilic copolymers and terpolymers form spherical or wormlike micelles in water, which was confirmed using transmission electron microscopy (TEM), while small-angle X-ray scattering (SAXS) revealed the core-shell or core-double-shell morphologies of these nanoparticles. The core and shell sizes obey the scaling laws for starlike micelles predicted by the scaling theory. Biocompatibility studies confirm that all copolymers obtained are noncytotoxic and, at the same time, exhibit high sensitivity during in vitro 19F MRI studies. The gradient copolymers provide the best 19F MRI signal-to-noise ratio in comparison with the analogue block copolymer structures, making them most promising as 19F MRI contrast agents.


Asunto(s)
Flúor , Micelas , Polímeros , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
Neurochem Res ; 45(1): 159-170, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30945145

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3-SiO2) with or without modification by an ascorbic acid (γ-Fe2O3-SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.


Asunto(s)
Ácido Ascórbico/metabolismo , Ácido Ascórbico/toxicidad , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Nanopartículas de Magnetita/toxicidad , Animales , Antioxidantes/metabolismo , Antioxidantes/toxicidad , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Femenino , Ratas , Ratas Wistar
5.
Molecules ; 26(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396204

RESUMEN

Early detection of metastasis is crucial for successful cancer treatment. Sentinel lymph node (SLN) biopsies are used to detect possible pathways of metastasis spread. We present a unique non-invasive diagnostic alternative to biopsy along with an intraoperative imaging tool for surgery proven on an in vivo animal tumor model. Our approach is based on mannan-based copolymers synergistically targeting: (1) SLNs and macrophage-infiltrated solid tumor areas via the high-affinity DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) receptors and (2) tumors via the enhanced permeability and retention (EPR) effect. The polymer conjugates were modified with the imaging probes for visualization with magnetic resonance (MR) and fluorescence imaging, respectively, and with poly(2-methyl-2-oxazoline) (POX) to lower unwanted accumulation in internal organs and to slow down the biodegradation rate. We demonstrated that these polymer conjugates were successfully accumulated in tumors, SLNs and other lymph nodes. Modification with POX resulted in lower accumulation not only in internal organs, but also in lymph nodes and tumors. Importantly, we have shown that mannan-based polymer carriers are non-toxic and, when applied to an in vivo murine cancer model, and offer promising potential as the versatile imaging agents.


Asunto(s)
Neoplasias de la Mama/patología , Mananos/metabolismo , Nanopartículas/administración & dosificación , Ganglio Linfático Centinela/patología , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Proliferación Celular , Femenino , Humanos , Metástasis Linfática , Mananos/química , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Desnudos , Nanopartículas/química , Imagen Óptica , Ganglio Linfático Centinela/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
MAGMA ; 32(1): 173-185, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30498886

RESUMEN

Over the last few years, the development and relevance of 19F magnetic resonance imaging (MRI) for use in clinical practice has emerged. MRI using fluorinated probes enables the achievement of a specific signal with high contrast in MRI images. However, to ensure sufficient sensitivity of 19F MRI, fluorine probes with a high content of chemically equivalent fluorine atoms are required. The majority of 19F MRI agents are perfluorocarbon emulsions, which have a broad range of applications in molecular imaging, although the content of fluorine atoms in these molecules is limited. In this review, we focus mainly on polymer probes that allow higher fluorine content and represent versatile platforms with properties tailorable to a plethora of biomedical in vivo applications. We discuss the chemical development, up to the first imaging applications, of these promising fluorine probes, including injectable polymers that form depots that are intended for possible use in cancer therapy.


Asunto(s)
Imagen por Resonancia Magnética con Fluor-19/métodos , Imagen Molecular/instrumentación , Sondas Moleculares/química , Animales , Medios de Contraste/química , Flúor/química , Imagen por Resonancia Magnética con Fluor-19/tendencias , Fluorocarburos/química , Humanos , Concentración de Iones de Hidrógeno , Luz , Ratones , Imagen Molecular/métodos , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo , Dispersión de Radiación , Temperatura
7.
MAGMA ; 32(1): 115-122, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30498883

RESUMEN

OBJECTIVE: 19F MRI requires biocompatible and non-toxic soluble contrast agents with high fluorine content and with suitable 19F relaxation times. Probes based on a DOTP chelate with 12 magnetically equivalent fluorine atoms (DOTP-tfe) and a lanthanide(III) ion shortening the relaxation times were prepared and tested. METHODS: Complexes of DOTP-tfe with trivalent paramagnetic Ce, Dy, Ho, Tm, and Yb ions were synthetized and characterized. 19F relaxation times were determined and compared to those of the La complex and of the empty ligand. In vitro and in vivo 19F MRI was performed at 4.7 T. RESULTS: 19F relaxation times strongly depended on the chelated lanthanide(III) ion. T1 ranged from 6.5 to 287 ms, T2 from 3.9 to 124.4 ms, and T2* from 1.1 to 3.1 ms. All complexes in combination with optimized sequences provided sufficient signal in vitro under conditions mimicking experiments in vivo (concentrations 1.25 mM, 15-min scanning time). As a proof of concept, two contrast agents were injected into the rat muscle; 19F MRI in vivo confirmed the in vivo applicability of the probe. CONCLUSION: DOTP-based 19F probes showed suitable properties for in vitro and in vivo visualization and biological applications. The lanthanide(III) ions enabled us to shorten the relaxation times and to trim the probes according to the actual needs. Similar to the clinically approved Gd3+ chelates, this customized probe design ensures consistent biochemical properties and similar safety profiles.


Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética con Fluor-19 , Flúor/química , Oxazoles/química , Pirimidinonas/química , Animales , Quelantes/química , Iones , Elementos de la Serie de los Lantanoides/química , Ligandos , Magnetismo , Peso Molecular , Ratas
8.
Biomacromolecules ; 19(8): 3515-3524, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30011367

RESUMEN

Magnetic resonance imaging using fluorinated contrast agents (19F MRI) enables to achive highcontrast in images due to the negligible fluorine background in living tissues. In this pilot study, we developed new biocompatible, temperature-responsive, and easily synthesized polymeric nanogels containing a sufficient concentration of magnetically equivalent fluorine atoms for 19F MRI purposes. The structure of the nanogels is based on amphiphilic copolymers containing two blocks, a hydrophilic poly[ N-(2-hydroxypropyl)methacrylamide] (PHPMA) or poly(2-methyl-2-oxazoline) (PMeOx) block, and a thermoresponsive poly[ N(2,2difluoroethyl)acrylamide] (PDFEA) block. The thermoresponsive properties of the PDFEA block allow us to control the process of nanogel self-assembly upon its heating in an aqueous solution. Particle size depends on the copolymer composition, and the most promising copolymers with longer thermoresponsive blocks form nanogels of suitable size for angiogenesis imaging or the labeling of cells (approximately 120 nm). The in vitro 19F MRI experiments reveal good sensitivity of the copolymer contrast agents, while the nanogels were proven to be noncytotoxic for several cell lines.


Asunto(s)
Medios de Contraste/química , Flúor/química , Imagen por Resonancia Magnética/métodos , Polietilenglicoles/química , Polietileneimina/química , Animales , Células Cultivadas , Medios de Contraste/efectos adversos , Células HeLa , Hemólisis/efectos de los fármacos , Humanos , Ratones , Nanogeles , Poliaminas/química , Polimerizacion , Ácidos Polimetacrílicos/química , Temperatura
9.
Biol Proced Online ; 19: 6, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28674481

RESUMEN

BACKGROUND: In vitro labelling of cells and small cell structures is a necessary step before in vivo monitoring of grafts. We modified and optimised a procedure for pancreatic islet labelling using bimodal positively charged poly(lactic-co-glycolic acid) nanoparticles with encapsulated perfluoro crown ethers and indocyanine green dye via microporation and compared the method with passive endocytosis. RESULTS: Pancreatic islets were microporated using two pulses at various voltages. We tested a standard procedure (poration in the presence of nanoparticles) and a modified protocol (pre-microporation in a buffer only, and subsequent islet incubation with nanoparticles on ice for 10 min). We compared islet labelling by microporation with labelling by endocytosis, i.e. pancreatic islets were incubated for 24 h in a medium with suspended nanoparticles. In order to verify the efficiency of the labelling procedures, we used 19F magnetic resonance imaging, optical fluorescence imaging and confocal microscopy. The experiment confirmed that microporation, albeit fast and effective, is invasive and may cause substantial harm to islets. To achieve sufficient poration and to minimise the reduction of viability, the electric field should be set at 20 kV/m (two pulses, 20 ms each). Poration in the presence of nanoparticles was found to be unsuitable for the nanoparticles used. The water suspension of nanoparticles (which served as a surfactant) was slightly foamy and microbubbles in the suspension were responsible for sparks causing the destruction of islets during poration. However, pre-microporation (poration of islets in a buffer only) followed by 10-min incubation with nanoparticles was safer. CONCLUSIONS: For labelling of pancreatic islets using poly(lactic-co-glycolic acid) nanoparticles, the modified microporation procedure with low voltage was found to be safer than the standard microporation procedure. The modified procedure was fast, however, efficiency was lower compared to endocytosis.

10.
Int J Mol Sci ; 16(9): 21658-80, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26370983

RESUMEN

To facilitate efficient drug delivery to tumor tissue, several nanomaterials have been designed, with combined diagnostic and therapeutic properties. In this work, we carried out fundamental in vitro and in vivo experiments to assess the labeling efficacy of our novel theranostic nanoprobe, consisting of glycogen conjugated with a red fluorescent probe and gadolinium. Microscopy and resazurin viability assays were used to study cell labeling and cell viability in human metastatic melanoma cell lines. Fluorescence lifetime correlation spectroscopy (FLCS) was done to investigate nanoprobe stability. Magnetic resonance imaging (MRI) was performed to study T1 relaxivity in vitro, and contrast enhancement in a subcutaneous in vivo tumor model. Efficient cell labeling was demonstrated, while cell viability, cell migration, and cell growth was not affected. FLCS showed that the nanoprobe did not degrade in blood plasma. MRI demonstrated that down to 750 cells/µL of labeled cells in agar phantoms could be detected. In vivo MRI showed that contrast enhancement in tumors was comparable between Omniscan contrast agent and the nanoprobe. In conclusion, we demonstrate for the first time that a non-toxic glycogen-based nanoprobe may effectively visualize tumor cells and tissue, and, in future experiments, we will investigate its therapeutic potential by conjugating therapeutic compounds to the nanoprobe.


Asunto(s)
Melanoma/metabolismo , Melanoma/patología , Imagen Molecular/métodos , Sondas Moleculares , Imagen Multimodal , Nanotecnología , Línea Celular Tumoral , Movimiento Celular , Supervivencia Celular , Medios de Contraste/química , Citoplasma/metabolismo , Glucógeno/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo , Imagen por Resonancia Magnética/métodos , Espectrometría de Fluorescencia , Coloración y Etiquetado
11.
Biomacromolecules ; 15(11): 4012-20, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25268047

RESUMEN

Due to its native origin, excellent biocompatibility and biodegradability, hyaluronan (HA) represents an attractive polymer for superparamagnetic iron oxide nanoparticles (SPION) coating. Herein, we report HA polymeric micelles encapsulating oleic acid coated SPIONs, having a hydrodynamic size of about 100 nm and SPION loading capacity of 1-2 wt %. The HA-SPION polymeric micelles were found to be selectively cytotoxic toward a number of human cancer cell lines, mainly those of colon adenocarcinoma (HT-29). The selective inhibition of cell growth was even observed when the SPION loaded HA polymeric micelles were incubated with a mixture of control and cancer cells. The selective in vitro inhibition could not be connected with an enhanced CD44 uptake or radical oxygen species formation and was rather connected with a different way of SPION intracellular release. While aggregated iron particles were visualized in control cells, nonaggregated solubilized iron oxide particles were detected in cancer cells. In vivo SPION accumulation in intramuscular tumor following an intravenous micelle administration was confirmed by magnetic resonance (MR) imaging and histological analysis. Having a suitable hydrodynamic size, high magnetic relaxivity, and being cancer specific and able to accumulate in vivo in tumors, SPION-loaded HA micelles represent a promising platform for theranostic applications.


Asunto(s)
Antineoplásicos/administración & dosificación , Compuestos Férricos/administración & dosificación , Ácido Hialurónico/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Micelas , Polímeros/administración & dosificación , Animales , Antineoplásicos/química , Células CACO-2 , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Compuestos Férricos/química , Células HCT116 , Humanos , Ácido Hialurónico/química , Células MCF-7 , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Nanopartículas del Metal/química , Ratones , Polímeros/química , Ratas Endogámicas BN , Ratas Endogámicas Lew , Células 3T3 Swiss , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
12.
MAGMA ; 27(4): 329-37, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24292067

RESUMEN

OBJECT: In vivo magnetic resonance imaging (MRI) of iron-labeled pancreatic islets (PIs) transplanted into the liver is still challenging in humans. The aim of this study was to develop and evaluate a double contrast method for the detection of PIs labeled with superparamagnetic iron oxide (SPIO) nanoparticles. MATERIALS AND METHODS: A double-echo three-dimensional (3D) spoiled gradient echo sequence was adapted to yield a sub-millisecond first echo time using variable echo times and highly asymmetric Cartesian readout. Positive contrast was achieved by conventional and relative image subtraction. Experiments for cell detection efficiency were performed in vitro on gelatin phantoms, in vivo on a Lewis rat and on a patient 6 months after PI transplantation. RESULTS: It was demonstrated that the proposed method can be used for the detection of transplanted PIs with positive contrast in vitro and in vivo. For all experiments, relative subtraction yielded comparable and in some cases better contrast than conventional subtraction. For the first time, positive contrast imaging of transplanted human PIs was performed in vivo in patients. CONCLUSION: The proposed method allows 3D data acquisition within a single breath-hold and yields enhanced contrast-to-noise ratios of transplanted SPIO labeled pancreatic islets relative to negative contrast images, therefore providing improved identification.


Asunto(s)
Medios de Contraste/química , Compuestos Férricos/química , Islotes Pancreáticos/citología , Imagen por Resonancia Magnética/métodos , Animales , Gelatina/química , Humanos , Aumento de la Imagen/métodos , Magnetismo , Masculino , Nanopartículas , Fantasmas de Imagen , Ratas , Ratas Endogámicas Lew
13.
J Colloid Interface Sci ; 663: 467-477, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38422973

RESUMEN

HYPOTHESIS: The development of bimodal imaging probes represents a hot topic of current research. Herein, we deal with developing an innovative bimodal contrast agent enabling fluorescence imaging (FI)/magnetic resonance imaging (MRI) and, simultaneously, consisting of biocompatible nanostructures. Optimized synthesis of advanced protein-embedded bimetallic (APEBM) nanocomposite containing luminescent gold nanoclusters (AuNC) and superparamagnetic iron oxide nanoparticles (SPION), suitable for in vivo dual-modal FI/MR imaging is reported. EXPERIMENTS: The APEBM nanocomposite was prepared by a specific sequential one-pot green synthetic approach that is optimized to increase metals (Au, Fe) content and, consequently, the imaging ability of the resulting nanostructures. The protein matrix, represented by serum albumin, was intentionally chosen, and used since it creates an efficient protein corona for both types of optically/magnetically-susceptible nanostructures (AuNC, SPION) and ensures biocompatibility of the resulting APEBM nanocomposite although it contains elevated metal concentrations (approx. 1 mg·mL-1 of Au, around 0.3 mg·mL-1 of Fe). In vitro and in vivo imaging was performed. FINDINGS: Successful in vivo FI and MRI recorded in healthy mice corroborated the applicability of the APEBM nanocomposite and, simultaneously, served as a proof of concept concerning the potential future exploitation of this new FI/MRI bimodal contrast agent in preclinical and clinical practice.


Asunto(s)
Medios de Contraste , Nanocompuestos , Animales , Ratones , Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Nanocompuestos/química , Imagen Óptica
14.
Macromol Biosci ; 24(6): e2300510, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38217510

RESUMEN

Theranostics is a novel paradigm integrating therapy and diagnostics, thereby providing new prospects for overcoming the limitations of traditional treatments. In this context, perfluorocarbons (PFCs) are the most widely used tracers in preclinical fluorine-19 magnetic resonance (19F MR), primarily for their high fluorine content. However, PFCs are extremely hydrophobic, and their solutions often display reduced biocompatibility, relative instability, and subpar 19F MR relaxation times. This study aims to explore the potential of micellar 19F MR imaging (MRI) tracers, synthesized by polymerization-induced self-assembly (PISA), as alternative theranostic agents for simultaneous imaging and release of the non-steroidal antileprotic drug clofazimine. In vitro, under physiological conditions, these micelles demonstrate sustained drug release. In vivo, throughout the drug release process, they provide a highly specific and sensitive 19F MRI signal. Even after extended exposure, these fluoropolymer tracers show biocompatibility, as confirmed by the histological analysis. Moreover, the characteristics of these polymers can be broadly adjusted by design to meet the wide range of criteria for preclinical and clinical settings. Therefore, micellar 19F MRI tracers display physicochemical properties suitable for in vivo imaging, such as relaxation times and non-toxicity, and high performance as drug carriers, highlighting their potential as both diagnostic and therapeutic tools.


Asunto(s)
Imagen por Resonancia Magnética con Fluor-19 , Nanopartículas , Nanomedicina Teranóstica , Animales , Imagen por Resonancia Magnética con Fluor-19/métodos , Nanopartículas/química , Nanopartículas/uso terapéutico , Materiales Biocompatibles/química , Micelas , Fluorocarburos/química , Flúor/química , Ratones , Imagen por Resonancia Magnética/métodos , Humanos , Halogenación
15.
Sci Rep ; 14(1): 3847, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360883

RESUMEN

In this work, we present the synthesis and evaluation of magnetic resonance (MR) properties of novel phosphorus/iron-containing probes for dual 31P and 1H MR imaging and spectroscopy (MRI and MRS). The presented probes are composed of biocompatible semitelechelic and multivalent phospho-polymers based on poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) coordinated with small paramagnetic Fe3+ ions or superparamagnetic maghemite (γ-Fe2O3) nanoparticles via deferoxamine group linked to the end or along the polymer chains. All probes provided very short 1H T1 and T2 relaxation times even at low iron concentrations. The presence of iron had a significant impact on the shortening of 31P relaxation, with the effect being more pronounced for probes based on γ-Fe2O3 and multivalent polymer. While the water-soluble probe having one Fe3+ ion per polymer chain was satisfactorily visualized by both 31P-MRS and 31P-MRI, the probe with multiple Fe3+ ions could only be detected by 31P-MRS, and the probes consisting of γ-Fe2O3 nanoparticles could not be imaged by either technique due to their ultra-short 31P relaxations. In this proof-of-principle study performed on phantoms at a clinically relevant magnetic fields, we demonstrated how the different forms and concentrations of iron affect both the 1H MR signal of the surrounding water molecules and the 31P MR signal of the phospho-polymer probe. Thus, this double contrast can be exploited to simultaneously visualize body anatomy and monitor probe biodistribution.


Asunto(s)
Imagen por Resonancia Magnética , Polímeros , Distribución Tisular , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Hierro , Agua
16.
Nanoscale Adv ; 6(12): 3041-3051, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38868824

RESUMEN

19F magnetic resonance (19F MR) tracers stand out for their wide range of applications in experimental and clinical medicine, as they can be precisely located in living tissues with negligible fluorine background. This contribution demonstrates the long-term dissolution of multiresponsive fluorinated implants designed for prolonged release. Implants were detected for 14 (intramuscular injection) and 20 (subcutaneous injection) months by 19F MR at 4.7 T, showing favorable MR relaxation times, biochemical stability, biological compatibility and slow, long-term dissolution. Thus, polymeric implants may become a platform for long-term local theranostics.

17.
Nanomaterials (Basel) ; 13(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36985921

RESUMEN

Nanocomposites serving as dual (bimodal) probes have great potential in the field of bio-imaging. Here, we developed a simple one-pot synthesis for the reproducible generation of new luminescent and magnetically active bimetallic nanocomposites. The developed one-pot synthesis was performed in a sequential manner and obeys the principles of green chemistry. Briefly, bovine serum albumin (BSA) was exploited to uptake Au (III) and Fe (II)/Fe (III) ions simultaneously. Then, Au (III) ions were transformed to luminescent Au nanoclusters embedded in BSA (AuNCs-BSA) and majority of Fe ions were bio-embedded into superparamagnetic iron oxide nanoparticles (SPIONs) by the alkalization of the reaction medium. The resulting nanocomposites, AuNCs-BSA-SPIONs, represent a bimodal nanoprobe. Scanning transmission electron microscopy (STEM) imaging visualized nanostructures with sizes in units of nanometres that were arranged into aggregates. Mössbauer spectroscopy gave direct evidence regarding SPION presence. The potential applicability of these bimodal nanoprobes was verified by the measurement of their luminescent features as well as magnetic resonance (MR) imaging and relaxometry. It appears that these magneto-luminescent nanocomposites were able to compete with commercial MRI contrast agents as MR displays the beneficial property of bright luminescence of around 656 nm (fluorescence quantum yield of 6.2 ± 0.2%). The biocompatibility of the AuNCs-BSA-SPIONs nanocomposite has been tested and its long-term stability validated.

18.
ACS Appl Mater Interfaces ; 14(45): 50445-50462, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36239348

RESUMEN

Diagnostics is an important part of medical practice. The information required for diagnosis is typically collected by performing diagnostic tests, some of which include imaging. Magnetic resonance imaging (MRI) is one of the most widely used and effective imaging techniques. To improve the sensitivity and specificity of MRI, contrast agents are used. In this review, the usage of metal-organic frameworks (MOFs) and composite materials based on them as contrast agents for MRI is discussed. MOFs are crystalline porous coordination polymers. Due to their huge design variety and high density of metal ions, they have been studied as a highly promising class of materials for developing MRI contrast agents. This review highlights the most important studies and focuses on the progress of the field over the last five years. The materials are classified based on their design and structural properties into three groups: MRI-active MOFs, composite materials based on MOFs, and MRI-active compounds loaded in MOFs. Moreover, an overview of MOF-based materials for heteronuclear MRI including 129Xe and 19F MRI is given.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Medios de Contraste/química , Metales/química , Imagen por Resonancia Magnética , Iones
19.
Sci Rep ; 12(1): 2118, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136162

RESUMEN

We present the MR properties of a novel bio-responsive phosphorus probe doped with iron for dual proton and phosphorus magnetic resonance imaging (1H/31P-MRI), which provide simultaneously complementary information. The probes consist of non-toxic biodegradable calcium phytate (CaIP6) nanoparticles doped with different amounts of cleavable paramagnetic Fe3+ ions. Phosphorus atoms in the phytate structure delivered an efficient 31P-MR signal, with iron ions altering MR contrast for both 1H and 31P-MR. The coordinated paramagnetic Fe3+ ions broadened the 31P-MR signal spectral line due to the short T2 relaxation time, resulting in more hypointense signal. However, when Fe3+ was decomplexed from the probe, relaxation times were prolonged. As a result of iron release, intensity of 1H-MR, as well as the 31P-MR signal increase. These 1H and 31P-MR dual signals triggered by iron decomplexation may have been attributable to biochemical changes in the environment with strong iron chelators, such as bacterial siderophore (deferoxamine). Analysing MR signal alternations as a proof-of-principle on a phantom at a 4.7 T magnetic field, we found that iron presence influenced 1H and 31P signals and signal recovery via iron chelation using deferoxamine.

20.
Nat Commun ; 13(1): 3179, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676253

RESUMEN

Contactless digital tags are increasingly penetrating into many areas of human activities. Digitalization of our environment requires an ever growing number of objects to be identified and tracked with machine-readable labels. Molecules offer immense potential to serve for this purpose, but our ability to write, read, and communicate molecular code with current technology remains limited. Here we show that magnetic patterns can be synthetically encoded into stable molecular scaffolds with paramagnetic lanthanide ions to write digital code into molecules and their mixtures. Owing to the directional character of magnetic susceptibility tensors, each sequence of lanthanides built into one molecule produces a unique magnetic outcome. Multiplexing of the encoded molecules provides a high number of codes that grows double-exponentially with the number of available paramagnetic ions. The codes are readable by nuclear magnetic resonance in the radiofrequency (RF) spectrum, analogously to the macroscopic technology of RF identification. A prototype molecular system capable of 16-bit (65,535 codes) encoding is presented. Future optimized systems can conceivably provide 64-bit (~10^19 codes) or higher encoding to cover the labelling needs in drug discovery, anti-counterfeiting and other areas.


Asunto(s)
Elementos de la Serie de los Lantanoides , Humanos , Espectroscopía de Resonancia Magnética , Magnetismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA